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Abstract

Weighing the importance of different pieces of information is a key determinant of making

accurate judgments. In social judgment theory, these weighting processes have been

successfully modeled with linear models. How people learn to make judgments has received

less attention. Although the hitherto proposed least mean squares or delta learning rule

can perfectly learn to solve linear problems, we found in a first study that it does not

adequately describe human learning. To provide a more accurate description of learning

processes we amended the delta learning rule with three learning mechanisms —a decay, an

attentional learning mechanism, and a capacity limitation —and tested in a further study

how well those learning mechanisms can describe and predict learning in linear judgment

tasks.

In the study, participants first learned to predict a continuous criterion based on four

cues. To test the three learning mechanisms rigorously against each other, we changed the

importance of the cues after 200 trials so that the mechanisms make different predictions

with regard to how fast people adapt to the new environment. On average, judgment

accuracy improved from trial 1 to 200, dropped when the task structure changed, but

improved again until the end of the task. The capacity-restricted learning model best

described and predicted the learning curve of the majority of participants. Taken together,

these results suggest that human learning when making inferences is governed by cognitive

capacity limitations.

Keywords: Multiple-cue Judgment; Rule-based Processes; Learning
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Testing learning mechanisms of rule-based judgment

When making judgments, such as predicting a job candidate’s future performance or

assessing the value of a used car, people usually rely on information about the object of

interest, such as the job candidate’s skills or the car’s mileage and accident records. An

important predictor for judgment accuracy is the ability to correctly weigh the available

aspects according to their importance. For instance, a car’s mileage may accurately predict

for how long the car will still run, whereas the time since its last cleaning may be less

important. Social judgment theory has proposed that the weight people assign to different

pieces of information (or cues) when making a judgment can be estimated by linear

regression models —following the assumption that judgments are formed by weighting and

then combining the cue values linear additively (e.g., Brehmer, 1994; Cooksey, 1996). In

the following decades, social judgment theory has been successfully employed to

understand which aspects people consider in judgment and decision problems in a range of

applied areas, such as personality judgments (Hirschmüller, Egloff, Nestler, & Back, 2013),

sentencing decisions (von Helversen & Rieskamp, 2009), personal selection (Graves &

Karren, 1992), or medical diagnoses (Wigton, 1996). Furthermore, the notion that people

preferably weigh and add information has inspired theories of information processing across

a variety of domains ranging from probability judgments (Nilsson, Winman, Juslin, &

Hansson, 2009) to impression formation (Anderson, 1971; Fishbein & Ajzen, 1975).

Despite the success of linear, additive models in describing how people combine

different pieces of information (i.e. cues) when making judgments, our knowledge about

how people learn to infer each cues’ importance is still limited. Previous research has

proposed that the additive integration of weighted information emerges from a serial,

capacity-constrained hypothesis-testing process restricting people to consider only linear,

additive rules (Juslin, Karlsson, & Olsson, 2008). Yet, the psychological mechanisms that

may limit this rule-based learning process have rarely been spelled out (but see Kelley &

Busemeyer, 2008; Kelley & Friedman, 2002; Rolison, Evans, Dennis, & Walsh, 2012;
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Speekenbrink & Shanks, 2010) and learning models incorporating these constraints have

seldom been tested against each other. The goal of the current research was to fill this gap

and to investigate how the learning of cue weights in linear judgment problems can be

described. To this goal we examined how a simple and widely used learning rule (the least

mean squares or delta-learning rule) can be extended with different psychological

mechanisms to explain how people learn the importance of cues in multiple-cue judgment

tasks.

In the following we give an overview on how people weight information in

multiple-cue judgments and review the least mean squares rule as a model describing the

learning process as well as how it deviates from human learning. Next, we extend this

learning rule by different psychological mechanisms to capture human performance and test

these psychological mechanisms against each other in two studies.

Rule-based models of human judgment

Social judgment theory (SJT) has proposed that people approach judgment problems

such as assessing the selling price of a car by considering the different aspects that could

affect the car’s worth, weighting them by their importance, and summing up the weighted

cue values. This idea has been formalized by portraying a persons’ judgments ĵ as a linear,

additive function of the cue values xi weighted by their importance, the cue weights wi,

which can be mathematically modeled by a linear regression.

ĵ =
∑
i

wi · xi (1)

with xi=
[
x1 ... xn 1

]
where n denotes the number of cues and 1 denotes the

constant intercept. Accordingly, these rule-based models assume that people abstract the

importance of each cue and prescribe how the abstracted knowledge should be combined.

Linear additive rules capture human judgments very well in applied settings but also

in experimental studies in which people learn to solve new judgment tasks (for a review see
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Karelaia & Hogarth, 2008). In particular, linear rules describe judgments well in tasks in

which the criterion is a linear, additive function of the cues (Hoffmann, von Helversen, &

Rieskamp, 2016; Juslin et al., 2008; Scheibehenne, von Helversen, & Rieskamp, 2015). In

addition, the cue weights implied by linear rules have been found to successfully predict

participants’ judgments for unknown objects (Hoffmann, von Helversen, & Rieskamp,

2014) and correspond well with people’s explicit judgment rules (Einhorn, Kleinmuntz, &

Kleinmuntz, 1979; Lagnado, Newell, Kahan, & Shanks, 2006; Speekenbrink & Shanks,

2010). Furthermore, when considering a task in which participants learn the correct

weights of cues over repeated trials with feedback, it has been shown that the cue weights

estimated from a rolling regression —a series of linear regressions fitted to a fixed set (or

window) of training trials and repeatedly moved one trial ahead —match people’s stated

importance of each cue across the learning phase (Lagnado et al., 2006). However,

although the rolling regression provides insights into the question of how the importance

people assign to different cues changes over time, this descriptive model is mute about the

cognitive learning processes underlying changes in cue importance. Attempts to model

these learning processes mathematically have predominantly relied on the least mean

squares rule to adjust the cue weights over trials (Gluck & Bower, 1988; Kelley &

Busemeyer, 2008; Kelley & Friedman, 2002; Rolison et al., 2012).

The Least Mean Squares (LMS) rule

Learning the importance of each cue requires repeatedly updating the cue weights

based on feedback about the correct criterion. It has been suggested that people update

these cue weights by comparing two successively presented objects and relating the

difference in judgment criteria to the difference in cue values (Juslin et al., 2008; Pachur &

Olsson, 2012). This trial-by-trial updating process is mathematically captured by the

delta-learning or "LMS rule" (called "LMS rule" because it converges to the least mean

squares, LMS, solution Gluck & Bower, 1988; Sutton & Barto, 1981). In each trial, the
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judgment is made based on a linear regression model (Equation 1). After each trial, the

cue weights are updated for the next trial depending on how much the judgment ĵ deviated

from feedback y. The more the judgment deviated from the correct judgment and the

higher the learning rate λ is, the more strongly the cue weights should change in the next

trial ∆wi. Changes in the cue weights are attributed to those cues with higher cue values.

∆wi = λ · xi · (y − ĵ) (2)

At the end of each trial the cue weights are updated with their associated changes.

wi = wi + ∆wi (3)

The LMS rule is identical to the Rescorla-Wagner learning model (Rescorla &

Wagner, 1972; Sutton & Barto, 1981) and has been applied to describe conditioning (Siegel

& Allan, 1996), category learning (Gluck & Bower, 1988; Shanks, 1991), learning in

multiple-cue judgment (Kelley & Busemeyer, 2008), and reward-related learning in

neuroscience (O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003; Schultz & Dickinson,

2000; Tobler, O’doherty, Dolan, & Schultz, 2006). In a first step, we aimed to evaluate how

well the LMS rule can describe participants’ judgments over the course of learning and

then investigated whether extending it with psychologically informed mechanisms can

improve the prediction of human learning.

Reanalysis: Comparing the LMS rule to a rolling regression

To investigate this question, we compared the performance of the LMS rule to a

rolling regression model. The rolling regression can be used as a measurement model to

detect which cues people apply and how the cue weights change over time (Kelley &

Friedman, 2002; Lagnado et al., 2006). In a rolling regression, a linear regression model is

repeatedly estimated for a fixed number of judgments starting from the first to the nth

learning trial (where n indicates the window size) and this window is then repeatedly
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moved by one trial ahead until it includes the last learning trial. For instance, using a

window size of 50 trials the rolling regression is estimated in the first step using trial 1 to

50, next using trial 2 to 51, and so forth. With sufficiently small window sizes the rolling

regression can reflect any kind of changes in cue weights that occur during the learning

phase and thus its goodness of fit provides an upper limit for the fit of any learning model

of the cue weights. We also estimated a baseline model as a lower limit any learning model

has to beat, which simply learns participant’s mean judgment over the learning trials. To

evaluate the performance of the LMS rule against the rolling regression and the baseline

model, we reanalyzed the linear judgment task from Hoffmann et al. (2014). In this study,

a linear regression model described participant’s judgment well at the end of training and

also best predicted judgments for new objects for the majority of participants compared to

an exemplar model.

Judgment task. In the judgment task, the criterion value ranging from 0 to 50

was perfectly predicted by four quantitative cues that could take values from 0 to 5. The

criterion value was a linear, additive function of these cues, y = 4x1 + 3x2 + 2x3 + x4.

Participants learned to predict the judgment values of 25 objects over 10 blocks with items

presented in random order in each block, resulting in 250 training trials. In each trial,

participants were asked to make a judgment and afterwards received feedback about the

correct outcome. After 250 trials, participants moved to a test phase in which they judged

15 unknown objects four times.

Comparison to a rolling regression. We used a rolling regression with a fixed

window of 50 trials and calculated the RMSD between its prediction for the last trial in a

window (hence trial 50, 51...) and participants’ judgment for this trial from trial 50 to 250

in the training phase. The last window of the rolling regression is akin to a linear

regression fitted to the last 50 training trials. For the LMS rule we assumed that at the

beginning of the task all cues have starting weights of zero, but that participants have a

starting bias corresponding to the intercept in a linear regression. This starting bias was
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set to the participants’ judgment in the first trial. The models’ learning rate and standard

deviation were estimated by minimizing the maximum likelihood between participants’

judgments and model predictions over all trials in the training phase (for details on model

estimation and comparison see Appendix A, for model parameters see Appendix B). Based

on the cue weights in each trial we then calculated the RMSD between model predictions

and participants’ judgments from trial 50 to 250 as well as the RMSD for the last block of

training (from trial 226 to 250). We only considered trials from trial 50 onwards to enable

a better comparison with the rolling regression.

Table 1 summarizes the model fits, that is to what degree model predictions deviate

from participants’ judgments. Considering all training trials, the LMS rule outperformed

the baseline model, V = 12775 (paired Wilcoxon test), p < 0.001, 95% CI [-1.2,-0.6], but

did not meet the performance of the rolling regression model, V = 41328, p < 0.001, 95%

CI [3.1,3.7]. More importantly, the average RMSD of the LMS rule was almost twice as

high as the average RMSD of the rolling regression and close to the average RMSD for the

baseline model. To more closely track the learning path in the training phase, we compared

the cue weights estimated from trial 51 to trial 250 for the LMS rule and the rolling

regression (Figure 1). For the most important cue, cue 1, the rolling regression and the

LMS rule propose a similar learning path, but the LMS rule systematically underestimates

the importance participants gave to all other cues. Furthermore, the LMS rule suggests a

slow, but steady learning of cue 2 and cue 3, whereas the rolling regression weights suggest

that people only update the importance of cue 2 in early learning trials and do not update

the importance of cue 3. Hence, the estimated cue weights from the rolling regression and

the LMS rule show systematic deviations during the learning phase.

Although we think that the rolling regression represents a good measurement model

to identify the importance people give to different cues (without identifying the learning

process), it faces the danger of overfitting when being estimated using only a small window

size (Pitt & Myung, 2002). The LMS rule, in contrast, was estimated based on all training
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trials, thus restricting parameter estimates more strongly. A more conservative test of

model performance requires predicting new data based on the cue weights. Accordingly, we

used the resulting cue weights at the end of training (or the cue weights obtained from the

last 50 trials for the rolling regression) to predict participants’ judgments for unknown

items in the test phase.1 Similar to the training results, the LMS rule captured judgments

for unknown items better than the baseline model, V = 5073, p < 0.001, 95% CI [-5.2,-3.4],

but still did not outperform the predictive performance of the rolling regression, V =

40759, p < 0.001, 95% CI [3.1,3.9]. Taken together, these results suggest that the LMS rule

cannot appropriately reproduce the learning path in rule-based learning, nor accurately

predict judgments for new objects after training.

Psychological constraints in rule-based learning

Why may the LMS rule fail to account for rule-based learning? The LMS rule implies

that the learning rate is stable across all learning trials and all cue weights are updated

with the same learning rate. Past evidence has accumulated that human rule-based

learning diverges in important ways from such an idealized learning process. First, studies

in which the cues’ importance changes over time indicate that people adjust to this change

more slowly than they acquired the solution to the initial judgment problem (Dudycha,

Dumoff, & Dudycha, 1973; Peterson, Hammond, & Summers, 1965; Summers, 1969; but

see Speekenbrink & Shanks, 2010). Second, increasing the validity of one cue has been

shown to attenuate learning about the predictive validity of a second cue (cue competition

effects, Birnbaum, 1976; Busemeyer, Myung, & McDaniel, 1993a, 1993b) indicating that

learning rates for one cue depend on the existence of another cue.

These phenomena have been been traced back to different psychological mechanism

altering the learning process. First, it has been assumed that people adapt to a task more
1In Hoffmann et al. (2014), the RMSD between model predictions and judgments in the test phase was

calculated using participants’ average judgment for each test item, not the individual responses on each test

trial. For this reason, the RMSD reported here deviates from the one reported in the article.
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slowly, the more experience they gain with the task. Accordingly, this explanation proposes

that learning speed decays across learning trials (Kelley & Busemeyer, 2008; Rolison et al.,

2012). Second, it has been argued that learning rules in multiple-cue judgment tasks is

restricted by a limit in working memory capacity (Hoffmann, von Helversen, & Rieskamp,

2013, 2014; Juslin et al., 2008). A capacity limitation would constrain how much people

update the set of hypotheses on a single trial and, in turn, would cause cue competition

effects (Busemeyer et al., 1993b). Finally, it has been proposed that it is not a capacity

restriction per se that limits learning, but limited attentional resources and psychological

mechanisms guiding the distribution of attention during learning (Kruschke, 1996; for a

review see Le Pelley, Mitchell, Beesley, George, & Wills, 2016). Accordingly, attention

may limit which cues people focus on during learning and how strongly they update

different cues. In the remainder of this article, we will first specify these psychological

learning mechanisms mathematically and then test these mechanisms against each other

and the LMS rule in two studies.

LMS rule with decaying learning speed (Decay)

Previous research supports the idea that the more experience people gain with a

judgment task the more slowly they adapt to a change in the underlying task structure

(Dudycha et al., 1973; Peterson et al., 1965; Summers, 1969) suggesting that people may

not learn with a constant learning rate, but the learning rate may decrease over time. A

decay in learning speed has been mostly instantiated in rule-based learning models by

decreasing the updating of cue weights based on the number of previous trials (Kelley &

Busemeyer, 2008; for a similar version see Rolison et al., 2012)

∆wi = λ · xi · (y − j)
tδ

(4)

Parameter δ controls the decay rate with δ > 0. A higher decay rate implies that the

learning rate more strongly declines with a higher number of learning trials. Indeed,
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including a decay parameter has been shown in some tasks to provide a better description

of the learning process than the LMS rule (Kelley & Busemeyer, 2008; Rolison et al., 2012).

LMS rule with a capacity restriction (Capacity)

Theories of rule-based judgment put forth the idea that cognitive capacity

restrictions may affect rule-based learning (Hoffmann et al., 2014; Juslin et al., 2008).

Specifically, the comparison processes involved in learning from feedback require storing

and manipulating the judgment objects and thus may pose high demands on working

memory (Juslin et al., 2008). Supporting this idea, higher working memory capacity has

been related to a more accurate solution of rule-based judgment tasks (Hoffmann et al.,

2014). Reducing working memory demands by facilitating a direct comparison of cue

values in contrast speeds up learning in linear tasks (Juslin et al., 2008). Finally, cue

competition effects as well point towards the idea that learning is restricted by a cognitive

capacity limitation (Busemeyer et al., 1993a, 1993b). Specifically, Busemeyer et al. (1993b)

found that a moderately valid cue is perceived as less valid when paired with a highly valid

cue than when paired with a moderately valid cue. Based on these results, the authors

argued more generally that previously proposed learning models, for instance the LMS

rule, are not able to account for this effect because they gradually converge to the optimal

weights (Busemeyer et al., 1993a). Instead models predicting cue competition effects need

to impose a capacity constraint on the weights.

To our knowledge, past research has not yet specified, nor tested a rule-based

learning model for human judgment specifying this cognitive capacity restriction. We

implemented capacity restricted learning in our model by restricting the cue weights to

sum up to a capacity restriction r, ∑
i
|wi| ≤ r. If the capacity restriction is reached, each of

the updated cue weights is reduced by the difference between summed cue weights and the

capacity restriction, divided by the number of weights.
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wi = wi − sgn(wi) ·

∑
i
|wi| − r

i
(5)

Thus, increasing one cue weight above the capacity limit reduces all cue weights by

the same magnitude and, in effect, decreases all other cue weights. Accordingly, the

capacity restriction slows down updating of the cue weights and gives rise to cue

competition effects. These cue competition effects are most pronounced if the capacity

restriction falls below the optimal sum of weights because people will not learn to weight

the cues optimally and hence will not reach optimal performance. In case, the capacity

limit matches or somewhat exceeds the optimal sum of weights, the capacity model will

converge over the long run to the optimal weights, as do all other models. Compared to the

LMS rule, however, to what degree the cue weights are updated still hinges upon the

capacity limit preventing an overly strong adaptation of the cue weights and accordingly

more stable learning even for high learning rates. If the capacity limit strongly exceeds the

optimal sum of weights, however, learning proceeds similarly as in the LMS rule.

LMS rule with attention weights (Attention)

Learning research has emphasized the role of attentional processes in associative

learning (Denton & Kruschke, 2006; Kruschke, Kappenman, & Hetrick, 2005; Le Pelley

et al., 2016), category learning (Kalish & Kruschke, 2000; Kruschke, 1996), or causal

learning (Lachnit, Schultheis, König, Üngör, & Melchers, 2008). Recent research has

identified the predictiveness of the cues, the salience of the cues, and the value of the

outcome as major determinants of attentional biases in associative learning (Le Pelley

et al., 2016). Similarly, categorization research has argued that people may shift attention

between different cues depending on their importance, but also in response to the salience

of single cues (Kalish & Kruschke, 2000; Kruschke, 1996). Following this previous research,

we adapted an attentional shift mechanism specified for categorization problems to account

for rule-based learning in judgment (Kruschke, 1996). The model assumes that the
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judgment is in each trial a linear additive function of the cues, the cue weights, and the

attention weights.

ĵ =
∑
i

αi · wi · xi (6)

where αi = 1
n+1 are the attention weights. Accordingly, attention is equally

distributed across all cues when people make a judgment and attention previously paid to

a cue does not carry over to the next trial. Attention, however, plays an important role in

updating the cue weights. Specifically, before any cue weight is updated, the model adjusts

the attention weights.

∆αi = λα · xi · (y − ĵ) · wi (7)

where λα is the learning rate for the attention weights. Thus, the model focuses

attention more strongly on previously important cues and salient cues, that is cues with

high cue values. The attention weights are then updated, αi = αi + |∆αi|. Considering

only absolute changes in attention weights implies that higher cue weights draw a higher

attention towards them, independent of the direction of the predicted relationship.

Similarly, independent of the direction of judgment error, high judgment errors pronounce

the effect of focusing attention on the most important and salient cues, compared to trials

with only small errors. The updated attention weights are then normalized to reflect limits

in attentional capacity.

αi = eθ·αi∑
i
eθ·αi

(8)

The θ parameter determines the sensitivity to differences in attentional strength. In a

next step, the cue weights are adjusted based on the cue value, feedback, and the attention

attached to each cue.

∆wi = λw · (y − ĵ) · xi · αi (9)
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Accordingly, the more attention a cue receives, the more strongly the cue weights are

updated. In sum, the attention model postulates that more attention flows towards errors

that have been caused by cues that are salient and have been previously predictive. This

means that people should adapt faster to changes in importance of previously important

cues, but adapt more slowly to changes in the importance of previously unimportant cues.

Reanalysis: Comparing psychological learning models to the LMS rule

The proposed psychological learning models aim to incorporate key processes that

alter and limit people’s learning abilities in rule-based judgment. Compared to the LMS

rule, can those psychological mechanisms better capture how people learn to solve

rule-based judgment tasks? To understand which learning mechanism best describes and

predicts participant’s judgments in the experiment, we compared the models on two model

comparison criteria: the Bayesian Information Criterion (BIC, Schwarz, 1978) and a

generalization test (Busemeyer & Wang, 2000, see Appendix A for a more detailed

description). Whereas the BIC penalizes more complex models by accounting for the

number of free parameters,2 the generalization test measures to what degree the models

can also predict independent, unseen data. To calculate the BIC, we estimated each

model’s parameters based on all training trials. Based on the BIC, we then derived the

corresponding Bayesian Information weights, BICw, that yield the posterior probability of

each model given the data (Wagenmakers & Farrell, 2004). For the generalization test we

used the cue weights from the last learning trial to predict participants’ judgments for new

objects. Next, we computed the deviances between model predictions and participants’

judgments for all test trials, D, and similarly derived deviance weights, Dw.

Descriptively, the average BIC is lower for the capacity and the attention model than
2Of the three extensions of the LMS rule that we tested the decay model and the capacity model include

each one additional free parameter (the decay parameter δ, and the capacity restriction parameter r respec-

tively) and the attention model includes two additional parameters, the attentional learning parameter λα

and the sensitivity parameter θ.
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for the decay model and the LMS model with the capacity model reaching the highest

BICw (see Table 1). The decay model overall does not outperform the LMS rule. Using the

BICw to classify participants to each model further suggests that the majority of

participants is best described by the capacity model and only a minority is classified to the

decay or the attention model. Also, the LMS rule and the baseline model do not describe a

substantial number of participants.

Reflecting the results from training, the generalization test suggests an overall lower

D for the capacity and the attention model. Classifying participants to each model based

on the Dw again indicates that the capacity model best predicted judgments of the

majority of participants, whereas the decay model only described a minority of participants

best. The attention model best predicted a slightly larger number of participants compared

to the results based on BIC —mostly at the cost of the capacity model.

To gain more insight into the learning path, we compared the cue weights predicted

by each model to the weights of the rolling regression (Figure 1). These graphs suggest

that the decay model underestimates the importance of most cues for making a judgment.

In comparison, the capacity model in general catches the change in weights but slightly

overestimates the importance of the most predictive cue and underestimates the importance

of the least important cue. Finally, the attention model most precisely estimates the cue

weight of the most important cue and manages to match the rolling regressions’ cue

weights for the second and third most important cues at the end of the learning phase.

However, the cue weights deviate from the rolling regression in the first two thirds of the

learning phase and the model underestimates the weight for the least important cue.

In sum, the reanalysis suggested that a capacity-restricted learning model best

described rule-based learning, whereas a decay in learning speed or an attentional

mechanism fared less well. Compared with a stable rule-based judgment model at the end

of training, the capacity-restricted learning also predicted judgments for new objects fairly

well.
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Testing mechanisms of rule-based learning in a relearning experiment

The results from the reanalysis suggested that learning models incorporating

psychological mechanisms may better capture the learning path and also improve

predictions for unseen objects. In this reanalysis, participants only had to find out once

how important the cues are for making a judgment and the importance assigned to

different cues did not change over trials. The vast benefit of learning models is, however,

that they are able to predict how people learn to adapt their behavior to a new task.

Specifically, the decay model predicts that people should adapt more slowly to the new

task. In contrast, the capacity model predicts that people will not reach optimal

performance if the capacity limit has been exceeded. Finally, the attention model suggests

that attention focuses on cues that were previously relevant or are highly salient when

relearning a new task. The learning models hence allow fine-grained predictions about how

people should change their judgment policy, if the underlying task changes. In

consequence, to further evaluate the learning models and to test them rigorously against

each other it is necessary to contrast the models’ predictions in an experiment in which the

importance of the cues changes over trials and people have to adapt their judgment policy.

Therefore, we designed a relearning experiment in which 51 participants solved a

multiple-cue judgment task that changed over the course of learning. In the first half of the

learning phase, participants learned to predict the judgment based on four predictive cues.

After 200 trials, the least important cues gained importance for predicting the criterion,

whereas the two most important cues lost their importance.

Method

Participants. 51 participants (39 females, M Age = 22.1, SDAge = 3.6) were

recruited from the participant pool of the University of Basel. Participants received course

credit for their participation in the experiment. In addition, they could earn a

performance-dependent bonus (M = 6.2 CHF, SD = 2.9 CHF).
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Design and material. The cover story in the multiple-cue judgment task asked

participants to judge how many small animals different comic figures, the Sonics, caught on

a scale from 0 to 50. Participants were presented with pictures of these Sonics that varied

on four different quantitative cues. The Sonics had different sizes of their ears and their

nose, and a different number of hairs and stripes on their shirt. These pictorial cues could

be used to predict the criterion (the success of the Sonic).

To test how well the different learning models predict the learning path of the

participants, we changed during the judgment task how these cues had to be combined to

form the judgment criterion. Specifically, in the first 200 trials of the judgment task the

criterion was a linear, additive function of the cues, y = 4x1 + 3x2 + 2x3 + x4. After 200

trials, the task structure suddenly changed so that the two most important cues lost their

predictive power, whereas the two least important cues gained importance, y = 4x3 + 6x4.

To select this particular task structure, we used in a first step the median (as well as the

most likely) parameters from the reanalysis to predict learning performance as well as the

adaptation to a new task structure across a range of task combinations. For instance, we

also generated predictions for an experiment in which only one cue was predictive in the

first half of the experiment and after the task structure changed all cues were equally

predictive. We selected the task combination that best allowed us to make distinct

predictions for the learning models. Within this task combination, we next constructed a

presentation sequence from all possible items that maximized the possibility to

discriminate between the learning models. To generate this sequence, we randomly drew

1000 learning sequences, each consisting of 400 items, and estimated the models’

parameters for this sequence. We finally selected the presentation sequence that maximized

differences in model predictions across the whole learning phase as well as for the first 50

trials of the relearning phase.

For each participant, the cues x1 to x4 were randomly assigned to the pictorial cues

(e.g., ears or nose). Higher cue values, however, were always associated with more salient
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pictorial features. For instance, a cue value of zero corresponded to a Sonic without stripes

on the belly and a cue value of five to a Sonic with five stripes on the belly. Likewise, a cue

value of zero on the cue ’nose’ corresponded to a Sonic without a (visible) nose, whereas a

Sonic with a cue value of five had a big nose.

Procedure. The experiment consisted of 400 learning trials, divided into 16

learning blocks with 25 trials each. In each trial, participants first estimated the criterion

on a scale from 0 to 50 and afterwards received feedback about their own answer, the

correct outcome, and the points they earned. After 200 learning trials (i.e., after the eight

block), the task structure changed and participants had to relearn the importance of the

cues. Participants were informed in the beginning of the experiment about a potential

change in the task, yet were not informed when the change would happen but had to infer

that a change occurred from the feedback they received.

To motivate participants to achieve a high judgment accuracy, they could earn points

in each trial depending on how much their judgment j deviated from the correct criterion y:

Points = 20− (j − y)2

7.625 (10)

This function was truncated so that participants could win at most 20 points in each

trial and could not lose any points. In addition, participants could earn a bonus of 3 CHF

in the last learning block of each task (learning block 8 and 16) if they reached 80% of the

points.

Results

Learning performance. The learning performance suggested that participants on

average adapted to the change in the task structure (Figure 2). Descriptively, judgment

error, measured as the root mean square deviation (RMSD) between participants’

judgments and the criterion, dropped from the first learning block (M = 9.1, SD = 1.9,

with each block including 25 items) to the eighth block, M = 6.2, SD = 2.0, t(50) = -9.0, d
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= −1.45, p < 0.001 (d calculated using an effect size based on the change score for

repeated measures Morris & DeShon, 2002). When the task changed after the eighth block,

judgment error suddenly increased, M = 10.6, SD = 2.3, t(50) = 12.0, d = 1.92, p < 0.001,

but dropped again until the end of the experiment, M = 7.4, SD = 3.6, t(50) = −7.1, d =

−0.88, p < 0.001. Inspecting individual learning paths indicated that participants varied

strongly in the degree to which they successfully adapted to the change in task structure.

Compared to the first eight blocks of the experiments, judgment performance varied more

strongly between participants after the task structure changed. Whereas some participants

quickly achieved a high judgment accuracy, other participants did not show any

improvement in judgment accuracy. This qualitative pattern indicates that how people

learn to adapt to a change in task structure may vary between participants and may

suggest different underlying learning mechanisms.

Average performance of the learning models. To understand which learning

mechanism best describes and predicts participant’s judgments over the experiment, we

compared each model’s performance based on the BIC and based on the generalization test

(see Appendix A for a more detailed description). For the BIC, we estimated each model’s

parameters based on all trials in the experiment and calculated the BIC weights (see

Appendix B for model parameters). To consider as well how accurately all models predict

new data, we further performed a generalization test (Busemeyer & Wang, 2000).

Specifically, we estimated each models’ parameters based on participants’ judgments in the

first 200 trials, used the obtained parameters (as well as the final weights) to predict

participants’ judgments in the second half of the experiment, and calculated the deviance

D based on these predictions. Table 2 summarizes the model fits, the relative performance

of all models within the set of considered models (BICw and Dw) as well as the absolute fit

between model predictions and participants’ judgments (RMSD).

As in the reanalysis, the capacity and the attention model possess a lower BIC than

the decay model or the LMS rule with the capacity model outperforming all other models.
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The decay model describes judgments slightly better than the LMS rule. But can the

capacity model also predict how well participants adapt to the change in task structure?

Matching the results based on BIC, the capacity model best predicts participants’

judgments in the second half of the experiment. The LMS rule and the decay model also

outperform a baseline model in predicting how participants adapt to the change in task

structure, but the decay model fares worse than the LMS rule. Yet, the relative advantage

of the attention model vanishes in generalization. Specifically, the D of the attention model

is similar to the D of the baseline model indicating that the attention model has problems

to predict how participants relearn the task. In fact, the model generated a higher D than

the baseline model for 21 participants and the RMSD between model predictions and

participants’ judgments suggests a stronger increase for the attention model than for the

other models compared to fitting.

To more closely investigate to what extent the learning path of the learning models

agrees with the average learning path of all participants, we generated the predicted RMSD

in each learning block based on each model’s predictions and the models’ implied standard

deviation. Figure 3 depicts for each learning block the average judgment error of all

participants (black lines) as well as the average judgment error predicted by each model

(gray lines, in columns), separately for model estimation and generalization (in rows).

White diamonds illustrate the absolute difference between the model’s implied learning

path and participants’ learning path, averaged across participants. Light gray lines show

the model predicted judgment error for each single participant. Early in training, the LMS

rule, the decay, and the attention model on average underestimate how well the average

participant adapts to the judgment task, but this difference mostly vanishes in later

learning blocks (Figure 3, upper row). In contrast, the capacity model captures quite well

the average learning path in the first half of the experiment, but generates overly optimistic

predictions about how successful participants adapt to the change in task structure and,

hence, the absolute difference between the learning paths increases in later learning blocks.
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Focusing more on the variation in individual model predictions, the graphs illustrate

that predicted judgment error is more variable for the LMS rule and the decay model than

for the capacity or the attention model across all learning blocks. Specifically, the capacity

model suggests for most participants a steady learning path in the first half of the

experiment as well as an improvement after the task structure changed with (mostly) faster

learning in the first learning blocks. The LMS rule and the decay model instead allow for

the possibility that after the task structure changed, judgment error does not sufficiently

decrease even after several learning blocks. Finally, the attention model describes a slower

learning path compared to the capacity model and participants in the first learning phase,

and allows a strong increase in judgment error even after several learning blocks in the

relearning phase.

In generalization, the overall predictive performance of all models drops and

differences in model implied learning paths are even more pronounced (Figure 3, lower

row): Whereas the capacity model mostly optimistically predicts a steady improvement for

the second half, the LMS rule and —to an even stronger degree —the decay model are

more likely to predict a high amount of judgment errors. Furthermore, the variability in

learning paths is much lower for the capacity model than for all other models. Finally, even

though the average predictions of the attention model appear to match the average

learning curve of participants well, the absolute difference between learning paths suggests

a rather strong increase in mismatch. Particularly, the attention model emphasizes that

judgment error may increase for some participants and predicts for a sizeable number of

participants large judgment errors late in learning (block 14-16). This might have

contributed to its inability to predict the learning path of individual participants.

Taken together, all learning models incorporating an additional psychological learning

mechanism outperformed the LMS rule in terms of BIC, but only the capacity model keeps

this advantage in generalization. Average model fits suggest that the capacity model overall

describes the learning path best. Yet, the high variability in model predictions as well as in
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learning performance of individual participants make it likely that different learning

mechanisms account better for different subgroups of individuals. Accordingly, in a next

step we assessed which learning mechanism best describes the majority of participants and

how individuals classified to different learning mechanisms differ in their overall learning

path.

Learning path for individual participants. To identify whether the learning

mechanisms best described different subgroups of individuals, we classified participants to

the different learning models based upon the relative performance of those models (that is,

the BICw or the Dw in the generalization test, respectively). Reflecting the results from the

reanalysis, the classification based on the BICw indicated that the capacity model described

the majority of participants best (66.7 %) and only a minority of participants were better

described by the decay model (23.5 %), the attention model (7.8 %), or the LMS rule (2.0

%). A classification based on the Dw suggested similarly that the majority of participants

(52.9 %) was classified as best predicted by the capacity model. Further, some participants

were classified as best predicted by the decay model (17.6 %), whereas the LMS rule or the

attention model only predicted judgments of a few participants best (7.8 % and 5.9 %,

respectively). Yet, a substantial number of participants were classified to the baseline

model (15.7 %) indicating that the learning models are prone to overfitting the data.

Figure 4 displays the learning path for participants best described by each model

(black lines, in columns) as well as the average judgment error predicted by each model

(gray lines, in columns), separately for model fitting and generalization (in rows). Light

gray lines show the model predicted judgment error for each single participant.

Considering first the learning path for model classifications based on BIC weights (Figure

4, upper row), the learning models seem to capture different learning patterns best.

Specifically, the decay model proposes predominantly that performance steadily improves

in the first half of the experiment for participants best fit by the model, but judgment error

only slowly decreases in the second half indicating that those participants may only slowly
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adapt to the changing task structure. The capacity model similarly proposes a steady

improvement during the first half, but in comparison predicts a faster decline in judgment

error after the change indicating a more successful relearning of the judgment task. In

contrast, the attention model captures the learning path of participants best for whom it

predicts only slow improvements in the first half of learning as well as adaptation problems

after the task structure changed, as indicated by even a slight increase in judgment error

from learning block 9 to 12. Finally, the participant classified to the LMS rule displays a

learning path that systematically deviates from the learning path implied by the model.

The qualitative differences in model predictions between the decay and the capacity model

are even more pronounced for participants classified based on Dw obtained from the

generalization test (Figure 4, lower row). Whereas the decay model predicts for most

participants a high judgment error after the task structure changed, the capacity model

predicts a more successful learning path for most participants.

Taken together, the capacity model best described and predicted how the majority of

participants learned to adapt their judgments over trials suggesting on average a steady

adaptation to the change in task structure. The decay model fared best in describing and

predicting those participants who more slowly detect this change and in turn show a

delayed improvement in judgment accuracy.

Robustness check. In the preceding analysis, all learning models included the

strong assumption that participants make the first judgment without considering any cues

or cue values, that is, the starting weights in the first trial were set to [0 0 0 0 j] with j

reflecting a starting bias corresponding to an intercept in a regression model. It is possible

that this assumption may have biased our analysis and another learning model may yield a

better performance if we relax this assumption. To control for this possibility, we varied

the starting weights systematically from assuming that all cues equally contribute to the

judgment in the first trial, but not the bias (0 % bias) to no contribution of the cues to the

judgment (100 % bias corresponding to our previous analysis) in steps of 12.5 % bias. The
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weights in the first trial were thus calculated as

wn = j ∗ (100%− b)∑
xn

(11)

with b varying the percentage of bias. If the starting weights biased our analysis

towards the capacity model and another model, for instance the attention model, performs

better considering a different set of starting weights, we would expect that this competitor

shows consistently a higher BICw (or Dw, respectively) than the capacity model for

different sets of starting weights. A mere reduction in BICw for the capacity model,

however, could also result because we maximized the possibility to discriminate between

models using the starting weights with a 100 % bias. Thus, the ability to discriminate

between the models may be lower for different starting values and the reduction in BICw is

not a sufficient indicator for a worse model performance.

Figure 5 displays how the average BICw (left panel) and Dw (right panel) for each

model (separate lines: baseline, rule, decay, capacity, and attention) vary as a function of

the percentage of bias. For both BICw and Dw, the pattern suggests that the weights for

the capacity model increase with a higher percentage of bias. In contrast, with a lower bias

the BICw for the LMS rule and the decay model increase. In generalization, the Dw for the

LMS rule and the baseline model increase similarly with a lower bias. Still, the capacity

model possesses a higher BICw and a higher Dw across all starting weights we used. In

sum, although the discrimination between the models varies with the bias, the advantage of

the capacity model appears to be robust against variations in starting weights.

General Discussion

Weighing information according to its importance has been deemed one of the core

competences in human judgment. However, how people form these weights has received less

attention. The predominant model to describe the learning process, the LMS rule, assumes

that people will be able to learn the optimal cue weights when receiving appropriate
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feedback —an assumption that contradicts prior evidence showing that human learning

depends on the relative weight of the cues (Busemeyer et al., 1993b) and on average slows

down when people have to adapt to a new task structure (Betsch, Brinkmann, Fiedler, &

Breining, 1999, 2001; Bröder & Schiffer, 2006; Rieskamp, 2006). Still, little research has

tried to capture how people learn the importance of cue weights within a formal modeling

approach (for exceptions see Kelley & Busemeyer, 2008; Speekenbrink & Shanks, 2010). In

our study, we aimed to fill this gap by a) systematically comparing the LMS rule to human

learning in judgment and b) by implementing three psychological mechanisms into the

LMS rule that have explained deviations from optimal learning in related research areas: a

decay of the learning rate, a capacity restriction, and attentional learning.

Overall, we found that the psychological learning mechanisms better described the

learning process than the simple LMS rule. In the reanalysis, all psychological learning

models predicted judgments more accurately than the LMS rule. To tear the psychological

learning mechanisms apart, we designed an experiment assessing how well people relearn a

task after the judgment environment changed making it necessary that participants

adjusted the learned cue weights to accurately predict the criterion. In this experiment,

however, only the capacity model outperformed the LMS model and the baseline model in

both fitting the whole learning phase and predicting learning in a generalization test.

These results show that considering psychological constraints is essential to understand

how people learn to solve judgment problems and suggest that capacity restrictions are the

most likely mechanism explaining the systematic differences between human performance

and an optimal learning algorithm.

The advantage of capacity restrictions in learning

Why is there a benefit for the capacity model? The capacity model has been

motivated by research on cue competition and capacity limits in judgment and decision

making (Birnbaum, 1976; Busemeyer et al., 1993a, 1993b; Juslin et al., 2008). It assumes
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that a capacity limit restricts how much importance people assign to the cues, which slows

down updating of the cue weights and allows for the possibility that people do not learn

the optimal weights even after a long time. Further, increases in one weight imply

decreases in other weights. The version we proposed here assumes that if the capacity limit

is exceeded all cues weights are reduced by the same amount. Thus, compared to previous

evidence suggesting that the less valid cue suffers more from cue competition than the

highly valid cue (an asymmetric effect Busemeyer et al., 1993a), our model proposes that

all cues are affected by cue competition to the same degree (a symmetric effect). Although

it would be possible to adapt the updating rule (Equation 5) to allow for asymmetric

effects, previous work also suggests that cue competition effects may be less pronounced in

judgment than they are in related domains. Specifically, Speekenbrink and Shanks (2010)

only observed cue competition effects in a minority of participants and a model

incorporating competitive effects only described a few participants best. Here, further

research should specify the conditions under which cue competition effects are likely to

occur in judgment and investigate which updating rule is called for.

Interestingly, the model proposes that this capacity restriction may possess an

adaptive value. Specifically, in the LMS rule high learning rates are not always beneficial

because they result in an over-adaptation of the cue weights and consequently the model

does not learn the task. A capacity limit close to the optimal sum of weights limits the

possibility that people update the cue weights too strongly and thus may enable higher

learning rates. Another important implication of a capacity limitation is that the degree to

which updating is affected increases with the number of cues. In line with this idea,

research suggests that varying one cue between trials can lead to faster learning (Juslin

et al., 2008) because in this case the respective cue weight can be learnt without reaching

the capacity limit.
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Slower learning with more experience

A common finding in the learning literature is that people are able to relearn a task

—albeit more slowly than in the original task (Betsch et al., 1999, 2001; Bröder & Schiffer,

2006; Dudycha et al., 1973; Peterson et al., 1965). Overall, in the second study people were

slower to learn the cue weights after the change than in the first learning phase. However,

there were large individual differences in the overall pattern of how people adapt to a

change in task structure. Whereas some people rather quickly adapted to the task

structure, others had problems with relearning the task. These results resonate well with

the findings by Speekenbrink and Shanks (2010) who also found large individual difference

in the ability to adapt to changes in cue validity. However, in both studies only a minority

of participants was best described and predicted by the decay model suggesting that a pure

slowing of learning over time is not enough to capture how people learn each cues’

importance.

One reason for why decay only played a minor in our experiment is potentially that

we informed participants about a potential change in the task structure and introduced a

rather salient shift in the cues’ importance. This shift in task structure resulted in a strong

reduction in judgment accuracy in the ninth block which may have clearly signaled to

participants that they should change their judgment policy. In this vein, previous research

suggests that learning rates depend on whether people expect a change or not. For

instance, Behrens, Woolrich, Walton, and Rushworth (2007) found on average higher

learning rates in variable environments including a lot of changes than in stable

environments in which no change occured. Accordingly, including a mechanisms allowing

for decay in the learning rate may gain importance when changes occur gradually and are

unexpected.
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Attentional learning

Attentional learning has been considered an important mechanism in learning and

evidence for the idea that attention influences learning processes is widespread (Le Pelley

et al., 2016). Effects of attention on learning have also been successfully demonstrated in

fields closely related to judgment research such as category learning. For instance,

measures of attention such as eye movements have been shown to reflect the importance of

cues in categorization decisions (Beesley, Nguyen, Pearson, & Le Pelley, 2015; Hoffman &

Rehder, 2010; Rehder & Hoffman, 2005). Further, attentional shifts can explain learning

phenomena such as blocking (Kruschke et al., 2005), overshadowing (Denton & Kruschke,

2006) and may also explain cue competition (Kruschke, 2001). Thus, attentional learning

seemed a promising candidate to explain how people deviate from optimal learning. Here,

we adapted a mechanism from category learning (Kruschke, 1996) to account for

multiple-cue judgments assuming that high error on that trial, previously important cues,

and high cue values increase attention to specific cues.

On average, the attention model performed quite well when fitting participants’ data

(second runner up). However, on the individual level only a small number of participants

were classified to the model. The model suffered even more in the generalization test

indicating strong overfitting. These misfits are potentially caused by an overly strong focus

on errors that can strongly change cue weights even at the end of the learning phase and

consequently a large variability in learning performance. Possibly, reducing the strength of

the attentional effect, limiting the factors that guide attention, or reducing the sensitivity

over the course of the learning phase (see also Le Pelley et al., 2016) could make the model

more resistant to overfitting and better suited to explain learning in judgment problems.

Further frameworks for learning multiple cue judgments

In the present work we focused on evaluating psychological constraints within the

framework of rule-based models learning from prediction error. Assuming that people rely
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on a linear additive judgment rule, the proposed rule-based learning models update the cue

weights based on the difference between the judgment and external feedback. However it

has been argued recently that human learning processes may be better described by

Bayesian learning mechanisms. In this vein, Speekenbrink and Shanks (2010) proposed a

Bayesian model of how people learn the cue weights in a linear judgment rule, which

described participants’ judgments better than the LMS rule.

In addition, it has been doubted that people solve judgment tasks by relying on

explicit linear rules, but may rather learn the associations between specific patterns of cue

and criterion values. In this vein, the associative learning model (ALM, Busemeyer, Byun,

Delosh, & McDaniel, 1997) has been shown to describe people’s performance in a variety of

judgment tasks well and to outperform a simple LMS model (Kelley & Busemeyer, 2008;

Speekenbrink & Shanks, 2010). In category learning, the predominant model is the

exemplar-based neural network ALCOVE (Kruschke, 1992) that could be adapted to

describe learning in judgment tasks. Similar to the LMS rule, ALM and ALCOVE are,

however, unable to predict cue competition effects (Busemeyer et al., 1993b) suggesting

that both models would need to include psychological constraints such as a capacity

restriction to describe human learning. Future research may try to disentangle the question

of which framework describes learning processes best from the question of which

psychological constraints are necessary to account for learning processes by implementing

these constraints in a similar fashion across different frameworks.

Conclusion

In sum, we aimed to investigate the psychological mechanisms constraining how

people learn to weigh different pieces of information in multiple cue judgment tasks. All

three mechanisms improved how well the LMS rule described the learning process, but

including a capacity restriction matched human performance most closely. These results

suggest that limited cognitive resources that confine knowledge updating may cause
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deviations from optimal learning and highlight that considering psychological constraints is

crucial to understand human behavior.
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Table 2

Model Fits in the Relearning Experiment. SD in Parentheses

Model BIC Generalization

BIC BICw n RMSD D Dw n RMSD

Baseline 4674 (153) 0 (0) 0 10.0 (0.9) 2382 (98) 0.15 (0.35) 8 10.5 (1.2)

LMS rule 4396 (349) 0.01 (0.10) 1 8.7 (1.9) 2280 (218) 0.09 (0.22) 4 9.2 (2.0)

Decay 4369 (360) 0.24 (0.43) 12 8.5 (1.9) 2291 (185) 0.18 (0.36) 9 9.3 (2.0)

Capacity 4127 (353) 0.67 (0.47) 34 7.3 (1.5) 2212 (352) 0.52 (0.49) 27 8.0 (2.4)

Attention 4256 (283) 0.08 (0.27) 4 7.8 (1.3) 2375 (534) 0.06 (0.18) 3 9.2 (2.1)

Note. BIC = Bayesian Information Criterion; BICw = Bayesian Information Criterion weight; RMSD

= Root Mean Square Deviation; D = Deviance; Dw = Deviance weight.
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Figure 1 . Cue weights predicted by each model in the reanalysis compared to cue weights

from a rolling regression. Grey shaded areas show confidence intervals.
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Figure 2 . Judgment error (Root Mean Square Deviation, RMSD) in the Relearning

Experiment. The black line shows the average judgment error, gray lines show judgment

error of individual participants in each learning block. Error bars plot bootstrapped

confidence intervals.
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Figure 3 . Judgment error (Root Mean Square Deviations, RMSD) averaged across all

participants (black lines) and judgment error predicted on average by each model (dark

grey lines) in each learning block. Filled white diamonds illustrate the absolute difference

between both learning paths; light grey lines depict model predictions for each single

participant. Columns show judgment error separately for each model (LMS rule, Decay,

Capacity, Attention). The upper row shows predicted judgment error when model

parameters were estimated using all learning trials; the lower row shows predicted

judgment errors when model parameters were estimated based the first 200 learning trials

and used to predict the learning path in the second half of the experiment. Error bars

indicate bootstrapped confidence intervals.
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classified to each model (black lines) and judgment error predicted by the model on average

for those participants (dark gray lines) in each learning block. Light gray lines depict

model predictions for each single participant. Columns show judgment error separately for

each model (LMS rule, Decay, Capacity, Attention), rows show predicted judgment error

separately for each fit indicator (Upper row: BIC, Lower row: Generalization). Error bars

indicate bootstrapped confidence intervals.
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Appendix A

Model estimation and model comparison

To evaluate the models’ relative performance, we employed two different model fit

indicators that vary in the degree to which they consider model generalizability and model

complexity: the Bayesian Information Criterion (BIC; Schwarz, 1978) as well as a

generalization test (Busemeyer & Wang, 2000). Both techniques can be used to compare

non-nested models, but consider different sources of model flexibility. The BIC penalizes

more complex models by accounting for the number of free parameters, but does not

account for model complexity in terms of the functional form. In contrast, the

generalization test is an indicator of projective fit and assesses to what degree the models’

performance also generalizes to a range of new items or a new condition. In doing so, it

implicitly accounts for both model complexity in terms of the number of parameters as well

as functional form.

All models were fitted to participants’ responses by minimizing the deviance -2LL,

the negative summed log-likelihood L of the model given the data.

−2LL = −2 ·
∑

ln(L) (12)

We calculated the likelihood as the probability density of participants’ judgments j

assuming a truncated normal distribution, with the models’ predicted responses ĉp as the

mean of the normal distribution and a fitted standard deviation σ. This truncated normal

distribution was chosen because it matched the response scale from 0 to 50.

L = 1
σ

φ(j|ĉp, σ)
Φ(50|ĉp, σ)− Φ(0|ĉp, σ) (13)

Bayesian Information Criterion

To calculate the BIC for each model, we estimated parameters of all learning models

based on all training trials for the reanalysis. In the relearning study, we estimated each

models’ parameters using all trials in the experiment. The BIC was then calculated from
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each models’ deviance penalized with the number of free model parameters k:

BIC = −2LL+ k lnn, (14)

where n denotes the number of observations. Smaller BIC values indicate a better model

fit. BICs were converted into BIC weights BICw,M that give the posterior probability of

each model given the data (Wagenmakers & Farrell, 2004).

BICwM = e−.5∆BICM∑
i
e−.5∆BICi

(15)

with ∆ BICM as the difference between model M and the best model in the set and ∆

BICi as the difference between a specific model i the best model.

Model fit measured in RMSD was calculated as the RMSD between model

predictions and participants’ judgments for the complete learning sequence. Model

predictions were constrained to the range of the scale from 0 to 50. To derive model

predictions for each learning block, we included for each participant a truncated normally

distributed random error matching the standard deviation from fitting and generated the

model predictions 100 times. We then calculated the RMSD for each learning block and

simulation and averaged across the simulations, separately for each learning block.

Generalization Test

To account for model flexibility introduced by the functional form and to test

generalizability to new items and conditions, we also conducted a generalization test

(Busemeyer & Wang, 2000). Specifically, in the reanalysis we used the regression weights

obtained from model fitting at the end of the training phase to generate model predictions

for validation items. In the relearning study, we estimated each models’ parameters on the

first half of the learning blocks (before changing the task structure) and predicted

participants’ learning performance in the second half of the learning blocks (after the task

structure changed). In accordance with the BIC weights, we computed deviance weights to

classify participants to each model. The reported overall RMSD was calculated as the



RULES IN JUDGMENT 47

RMSD between model predictions and participants’ judgments for the second half of the

experiment. Model predictions were truncated to match the range of the scale. To derive

thze predicted RMSD for each learning block in the validation trials, we generated model

predictions for all validation trials a 100 times using the estimated standard deviation from

each model. The predicted RMSD for each learning block was calculated separately for

each learning block and simulation and averaged across the simulations.
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Appendix B

Model parameters for the reanalysis and the relearning experiment

Appendix B lists the estimated mean parameter values for the reanalysis (Table B1) and

the relearning experiment (Table B2) with standard deviations in parentheses. Parameter

estimates for the reanalysis were estimated based on all training trials. In the reanalysis,

parameter estimates for the BIC were estimated based on all trials in the experiment (cf.

Appendix A). Parameter estimates for the generalization test were estimated based on the

first 200 trials experiment.



RULES IN JUDGMENT 49

Ta
bl
e
B1

M
od

el
Pa

ra
m

et
er

in
th

e
Re

an
al

ys
is

.
SD

in
Pa

re
nt

he
se

s

M
od

el
Pa

ra
m
et
er

λ
δ

r
λ
α

θ
SD

Ba
se
lin

e
0.
08
2
(0
.0
77
)

–
–

–
–

6.
6
(0
.9
)

LM
S
ru
le

0.
00
8
(0
.0
06
)

–
–

–
–

6.
2
(1
.9
)

D
ec
ay

0.
04
3
(0
.0
91
)

11
.7

(2
5.
4)

–
–

–
6.
2
(1
.9
)

C
ap

ac
ity

0.
01
9
(0
.0
14
)

–
17
.2

(5
.1
)

–
–

4.
7
(1
.1
)

A
tt
en
tio

n
0.
44
6
(0
.2
14
)

–
–

0.
04
2
(0
.1
12
)

7.
6
(2
3.
0)

5.
1
(1
.0
)

N
ot

e.
N

ot
e.
λ
=

Le
ar
ni
ng

ra
te
;δ

=
D
ec
ay

ra
te
;r

=
C
ap

ac
ity

re
st
ric

tio
n;
λ
α
=

Le
ar
ni
ng

ra
te

fo
r
at
te
nt
io
n
w
ei
gh

ts
;θ

=
Se

ns
iti
vi
ty

to
at
te
nt
io
na

ls
tr
en

gt
h;

SD
=

St
an

da
rd

D
ev
ia
tio

n.



RULES IN JUDGMENT 50

Ta
bl
e
B2

M
od

el
Pa

ra
m

et
er

in
th

e
Re

lea
rn

in
g

Ex
pe

ri
m

en
t.

SD
in

Pa
re

nt
he

se
s

C
rit

er
io
n

M
od

el
Pa

ra
m
et
er

λ
δ

r
λ
α

θ
SD

BI
C

Ba
se
lin

e
0.
08
9
(0
.0
95
)

–
–

–
–

7.
1
(0
.7
)

LM
S
ru
le

0.
01

(0
.0
08
)

–
–

–
–

6.
2
(1
.5
)

D
ec
ay

0.
03
4
(0
.0
36
)

0.
4
(0
.5
)

–
–

–
6.
1
(1
.5
)

C
ap

ac
ity

0.
01
2
(0
.0
11
)

–
16
.6

(5
.2
)

–
–

5.
2
(1
.1
)

A
tt
en
tio

n
0.
33
9
(0
.2
3)

–
–

0.
03
4
(0
.1
43
)

11
(2
9.
2)

5.
6
(0
.9
)

G
en
er
al
iz
at
io
n

Ba
se
lin

e
0.
11
9
(0
.1
09
)

–
–

–
–

6.
8
(0
.7
)

LM
S
ru
le

0.
00
9
(0
.0
07
)

–
–

–
–

6.
2
(1
.7
)

D
ec
ay

0.
03
6
(0
.0
49
)

2.
4
(1
3)

–
–

–
6.
1
(1
.7
)

C
ap

ac
ity

0.
01
8
(0
.0
13
)

–
18
.2

(7
.7
)

–
–

4.
9
(1
.0
)

A
tt
en
tio

n
0.
41
9
(0
.2
87
)

–
–

0.
12
0
(0
.2
54
)

11
(2
6.
5)

5.
6
(1
.1
)

N
ot

e.
B
IC

=
B
ay
es
ia
n
In
fo
rm

at
io
n
C
rit

er
io
n;
λ
=

Le
ar
ni
ng

ra
te
;δ

=
D
ec
ay

ra
te
;r

=
C
ap

ac
ity

re
st
ric

tio
n;
λ
α

=
Le

ar
ni
ng

ra
te

fo
r
at
te
nt
io
n
w
ei
gh

ts
;θ

=
Se

ns
iti
vi
ty

to
at
te
nt
io
na

ls
tr
en

gt
h;

SD
=

St
an

da
rd

D
ev
ia
tio

n.


	Titelblatt2017-06
	Impressum
	P_HoffmannHelversenRieskamp

