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Abstract

This paper studies the quality of portfolio performance tests based on out-of-sample

returns. By disentangling the components of out-of-sample performance we show that

observed differences are driven to a large extent by the differences in estimation risk. Our

Monte Carlo study reveals that the puzzling empirical findings of inferior performance of

theoretically superior strategies mainly result from the low power of these tests. Thus our

results provide an explanation why the null hypothesis that the simple equally weighted

portfolio cannot be outperformed by theoretically superior portfolio strategies can not be

rejected in many out-of-sample horse races regardless of the underlying testing strategy.

For the applied researcher we provide some guidance to cope with the problem of low

power. In particular, we show by the means of a novel pretest-based portfolio strategy, how

the information of performance tests can be used optimally.
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1 Introduction

Estimation risk is a well-known issue in empirical portfolio modeling. For a given performance

measure, estimation risk may cause a theoretically superior portfolio strategy to be inferior

compared to simple alternatives when it comes to a comparison of the performance measures

based on their estimated counterparts. The most prominent example is the equally weighted

(1/N) portfolio strategy, for which the null hypothesis of equal out-of-sample performance

compared to a more sophisticated, theory based strategy often cannot be rejected at conventional

significance levels (DeMiguel et al. (2009b)). While the literature on portfolio choice largely

concentrates on robustification strategies (e.g. Brodie et al. (2009), DeMiguel et al. (2009a)) in

order to improve the empirical performance, comparatively little attention has been devoted to

the statistical quality of performance tests to check, if a given strategy significantly outperforms

an alternative one. To our knowledge this is the first paper trying to shed light on the quality of

different portfolio performance tests in terms of size distortions and power.

The vast majority of portfolio performance studies either rely on the tests by Jobson and

Korkie (1981) in its corrected version by Memmel (2003) or on the bootstrap approach by Ledoit

and Wolf (2008). Both tests were originally developed for testing differences in the Sharpe ratios

of two asset returns. However, they can also be adopted to compare other performance measures

such as the variance (Ledoit and Wolf (2011)) or the certainty equivalent. Another way of testing

the performance measure differences is based on the Delta method (DeMiguel et al. (2009b)),

which is used to compute the standard errors of the difference in the certainty equivalents (CE)

of two competing portfolio strategies. The tests by Jobson and Korkie (1981) and DeMiguel et al.

(2009b) depend on the assumption of bivariate normality of the underlying process of portfolio

returns. In this case the asymptotic distribution of the difference in performance measures

can be written as a function of the first and the second empirical moments of the two return

processes in order to obtain the asymptotic standard error. The normality assumption is relaxed

in the bootstrap approach of Ledoit and Wolf (2008), which is also valid in settings, where the

return distribution is heavy-tailed with heteroskedasticity and/or autocorrelation.

So far little is known about the underlying forces leading to the poor testing results if theory

guided performance strategies are compared to the 1/N -strategy. We therefore take a closer

look on the stochastic nature of out-of-sample portfolio returns where the out-of-sample return
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distribution is a non-standard mixture distribution driven by the true underlying asset return

process but also by the distribution of the estimated portfolio weights. This scenario is most

common in empirical horse races comparing the out-of-sample performance of two competing

portfolio strategies. We show, that the null hypothesis of equal out-of-sample performance of

two alternative strategies jointly tests the sum of three different sources: (i) the performance

difference implied by the underlying theoretical strategies, (ii) performance differences caused

by within-sample estimation risk and (iii) performance differences due to the volatility of out-

of-sample portfolio return resulting from the variance in the estimated portfolio weights. In

particular, we show that the observed differences in out-of-sample performance are mainly driven

by the estimation risk component, which explains that the naive and theoretically inferior 1/N

strategy can easily outperform a theory based strategy due to the high estimation risk of the

latter. Most importantly, the decomposition leads to a clear definition of the null and the

alternative hypothesis in terms of the three components and allows us to assess the power of the

tests at economically realistic deviations from the null.

In our Monte-Carlo simulations we generally find low power for various popular testing

strategies and scenarios when the 1/N strategy serves as the benchmark. This explains why

the hypothesis of equal performance of the 1/N strategy with some other strategy is often not

rejected. The low power of the test for realistic (positive) performance differences under the

alternative hypothesis suggests a cautious choice of the significance level and the sidedness of the

test. In particular, it calls for choosing an optimal trade-off between Type I and Type II error.

Despite the lack of power information from the tests is not useless. We show that the

information provided by performance tests can be utilized within a novel pretest-based strategy

where the trade-off between size and power is optimized with respect to the out-of-sample

performance. Similar to shrinkage strategies which combine a given portfolio strategy with the

equally weighted portfolio by some optimality criterion (DeMiguel et al. (2009b), Frahm and

Memmel (2010), Frey and Pohlmeier (2015)), our pretest estimator uses the information about

both strategies through the outcome of the performance test. However, contrary to the shrinkage

approaches, our pretest strategy can be continuously updated to incorporate the most recent

information in the rolling window forecasting set-up.

The paper is organized as follows. In Section 2 we take a closer look at the distributional
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properties of portfolio performance measures based on in-sample and out-of-sample returns

and analyze the specific distributional properties of out-of-sample portfolio returns in the case

of estimated portfolio weights. In Section 3 we provide a Monte-Carlo evidence on the power

distortions of conventional portfolio tests. Section 4 proposes alternative strategies for the

applied researcher to cope with these deficiencies and deals with the optimal choice of the

significance level. In particular, we suggest various pretesting estimators to optimize the gains

from portfolio selection by choosing the optimal significance level. Section 5 summarizes the

main findings and gives an outlook on future research.

2 Return Distribution and Out-of-sample Performance

2.1 Measuring out-of-sample performance

In the following we argue that measuring and testing portfolio performance on out-of-sample

returns needs special consideration due to the stochastic nature of the estimated portfolio weights.

We first consider different within- and out-of-sample concepts of measuring portfolio performance,

which give rise to a refined definition of the null-hypothesis to be tested. In particular, we will

work out the crucial differences between performance measures based on the true parameters

(subsection i.), within-sample (subsection ii.) and out-of-sample concepts (subsection iii.) and

their corresponding limiting distributions depending on the sample size and the length of the

out-of-sample evaluation horizon (subsection iv.).

In what follows assume a portfolio universe of N risky assets and a risk-free asset. Let rt be

an excess return vector at time t with mean vector E [rt] = µ and variance-covariance matrix

V [rt] = Σ. Moreover, let ω(s) = ω(s)(µ,Σ) be the N ×1 vector of portfolio weights for strategy s,

e.g. ω(g) = Σ−1ι
ι′Σ−1ι

for the global minimum variance portfolio (GMVP) minimizing the portfolio

variance, ω(e) = 1
N ι for the equally weighted portfolio and ω(m) = 1

γΣ−1µ for the mean-variance

portfolio, maximizing the certainty equivalent (CE) for a given risk aversion parameter γ.

i.) Theoretical performance

For strategy s the portfolio return at time t is given by rpt (s) = ω(s)′rt with mean µp(s) =

E [rpt (s)] = ω(s)′µ and variance σ2
p(s) = V [rpt (s)] = ω(s)′Σω(s). Moreover, denote the per-
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formance measure based on strategy s by P
(
µp(s), σ

2
p(s)

)
with the performance difference

∆0(s, s̃) = P
(
µp(s), σ

2
p(s)

)
− P

(
µp(s̃), σ

2
p(s̃)

)
, where s is said to dominate s̃ if ∆0(s, s̃) ≥ 0.

In the following we restrict our analysis to the certainty equivalent given by CE(ω(s)) =

P
(
µp(s), σ

2
p(s)

)
= µp(s)− γ

2 σ
2
p(s), but the general arguments put forward in testing the differences

in certainty equivalents of two strategies also hold for other performance measures such as the

Sharpe ratio or the portfolio variance. Note that ∆0(s, s̃) is a concept based on population

parameters where its domain depends on the underlying performance measure P(·) and on the

specific choice of s and s̃. For instance, for a test comparing the performance of the mean-variance

portfolio (s = m) with some other strategy (s̃ 6= m), the domain of the CE-based performance is

always non-negative, ∆0(m, s̃) ≥ 0. For such a case, where one strategy is dominating another

strategy by definition, testing the null hypothesis implies testing on the parameter bound. For a

two-sided test of the null of equal performance, ∆0(m, s̃) = 0, the parameter space under the

alternative, ∆0(m, s̃) 6= 0, is inappropriately defined. Moreover, the null of equal performance is

economically not very meaningful, as it can only be obtained under rather unrealistic properties

of the underlying return process. Similar arguments hold for the GMVP if the performance

measure is based on the portfolio variance or the tangency portfolio, if the comparison is based

on two Sharpe ratios.

The role of estimation risk becomes clear by considering the performance measure evaluated

at the estimated portfolio weight (ω̂(s) = ω(s)(µ̂, Σ̂)). For the CE this is given by

CE(ω̂(s)) = ω̂(s)′µ− γ

2
ω̂(s)′Σ ω̂(s). (1)

By definition CE(ω(m)) ≥ CE(ω̂(s)) holds. But due to the randomness of CE(ω̂(s)) none

of the empirical strategies can be ordered ex-ante, i.e. CE(ω̂(s)) Q CE(ω̂(s̃)) for all s and s̃.

Provided the estimator for the portfolio weights is unbiased, the mean of CE(ω̂(s)) takes the

form (Cho, 2011):

E [CE(ω̂(s))] = CE(ω(s))− γ

2
tr
(
Σ V [ω̂(s)]

)
. (2)

Due to estimation risk in the portfolio weights the mean E [CE(ω̂(s))] is lower than the theoretical

CE. The difference increases with the degree of risk aversion γ and the estimation uncertainty
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reflected by the variance of the estimated portfolio weights V [ω̂(s)]. Performance measurement

based on the expected CE accounts for both the mean-variance trade-off from the financial risks

and for the estimation risk. In addition, the inclusion of estimation risk permits a theoretically

inferior strategy to be empirically superior due to lower estimation risk. Therefore, a two-

sided hypothesis based on the expected performance differences, e.g. H0 : E [CE(ω̂(s))] −

E [CE(ω̂(s̃))] = 0, is meaningful, even if strategy s is strictly dominating s̃ in theory. Finally,

note that a null hypothesis based on the differences in the expected empirical performance

measures tests the sum of the theoretical performance differences and the differences in estimation

risk.

ii.) Within-sample performance

Consider now the case when performance is measured by the estimated CE evaluated at the

plug-in estimated portfolio weights, where the mean and the variance of the return vector are

replaced by their sample counterparts µ̂ = 1
T

∑T
t=1 rt and Σ̂ = 1

T−1

∑T
t=1

(
rt − µ̂

)(
rt − µ̂

)′
. The

number of in-sample observations (size of the estimation window) is denoted by T . For the

estimated within-sample portfolio return r̂pt (s) = ω̂(s)′rt we obtain the empirical or within-sample

certainty equivalent P̂
(
µ̂p(s), σ̂

2
p(s)

)
:

ĈE(ω̂(s)) = µ̂p(s)−
γ

2
σ̂2
p(s), (3)

where µ̂p(s) = 1
T

∑T
t=1 r̂

p
t (s) = ω̂(s)′µ̂ and σ̂2

p(s) = 1
T−1

∑T
t=1

(
r̂pt (s) − µ̂p(s)

)2
= ω̂(s)′Σ̂ ω̂(s).

The estimated within-sample CE difference is defined as ∆̂(s, s̃) = ĈE(ω̂(s))− ĈE(ω̂(s̃)). Since

ĈE(ω̂(s)) is a random variable the portfolio performance difference based on the empirical

concepts is also random and may be larger or smaller than zero. However, for consistent

estimates of the true portfolio weights, ĈE(ω̂(s)) is a consistent estimator of CE(ω(s)) such

that plim
T→∞

∆̂(s, s̃) = ∆0(s, s̃), i.e. for large samples the problem of testing on the parameter

bound for some portfolio comparisons persists.

A properly defined null and alternative hypotheses in terms of fixed parameters taking into

account estimation risk could be based on the expected difference of the empirical performance
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measures, E
[
P̂
(
µ̂p(s), σ̂

2
p(s)

)
− P̂

(
µ̂p(s̃), σ̂

2
p(s̃)

)]
. For ĈE(ω̂(s)) this would be:

E
[
ĈE(ω̂(s))

]
= E

[
ω̂(s)′µ̂

]
− γ

2
E
[
ω̂(s)′Σ̂ ω̂(s)

]
. (4)

Contrary to (1), which depends on the unknown first and second moments of the return

process, ĈE(ω̂(s)) is feasible. However, its mean differs substantially from (2) due to its strong

nonlinearity in Σ̂ and µ̂. Besides the difference due to theoretical performance and estimation

risk concerning ω(·) the null hypothesis based on (4) includes in addition the estimation risk

related to P̂.

iii.) Out-of-sample performance

In the following we consider a typical rolling window set-up, where for period t+ 1 the out-of-

sample portfolio return r̂pt+1(s) is based on a one-step ahead forecast of the portfolio weights

ω̂t+1|t(s) with period {t−T, . . . , t} as the estimation window. We adopt the standard assumption

for static models that the last available estimate ω̂t(s) is used to compute the out-of-sample

return for the next period, r̂pt+1(s) = ω̂t+1|t(s)
′rt+1 = ω̂t(s)

′rt+1. Assuming independence for

the return process, rt+1 and ω̂t(s) are independent. Population mean and variance of the

out-of-sample portfolio returns (op) are given by

µop(s) = E
[
r̂pt+1(s)

]
= E [ω̂t(s)]

′ µ,

σ2
op(s) = V

[
r̂pt+1(s)

]
= E

[
ω̂t(s)

′Σ ω̂t(s)
]

+ µ′V [ω̂t(s)]µ.

The variance of the out-of-sample return process, σ2
op(s), reveals the typical dual character. The

first term represents the additional volatility resulting from estimation uncertainty concerning

ω(s), while the second term captures the volatility resulting from the fact that the expectation

of the out-of-sample return has to be estimated. Provided unbiased estimation of the portfolio

weights, the theoretical out-of-sample CE takes the form:

CEop(ω̂t(s)) = µop(s)−
γ

2
σ2
op(s) = E [CE(ω̂t(s))]−

γ

2
µ′V [ω̂t(s)]µ,
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where E [CE(ω̂t(s))] = CE(ω(s))− γ
2 tr
(
Σ V [ω̂(s)]

)
is given by (2). Compared to the theoretical

CE defined in i.) there is a double penalization on theoretical out-of-sample CE through the

within-sample estimation risk given by the term −γ
2 tr
(
Σ V [ω̂(s)]

)
and the out-of-sample risk

given by −γ
2µ
′V [ω̂t(s)]µ. The out-of sample difference in portfolio performance is given by

∆op(s, s̃) ≡ ∆0(s, s̃)− γ

2

[
tr(Σ V [ω̂t(s)])− tr(Σ V [ω̂t(s̃)])

]
− γ

2
µ′
[

V [ω̂t(s)]−V [ω̂t(s̃)]
]
µ. (5)

For the case of the equally weighted portfolio as the benchmark portfolio, s̃ = e, ∆op(s, s̃)

simplifies, since V [ω̂t(s̃)] = 0. This drives the strong out-of-sample performance of the equally

weighted portfolio compared to empirical portfolio strategies relying on imprecisely estimated

portfolio weights. Figure 1 provides some insights into the quantitative importance of the

the components of the out-of-sample CE differences for the GMVP and the equally weighted

portfolio for different portfolio dimensions where mean vector and covariance matrix of the

returns were taken from the K.R. French data website1. The upper-left plot depicts the difference

in theoretical CE for GMVP and equally weighted portfolio for different number of assets N and

different values of the risk aversion parameter γ. Unsurprisingly, the larger the asset universe,

the stronger the diversification effect so that the dominance of the theoretical CE of the GMVP

increases over the equally weighted portfolio. The dominance also increases with higher risk

aversion as the diversification effect becomes more relevant with increasing γ.

The upper-right plot shows the out-of-sample CE difference for the two portfolio strategies

as given by (5). Compared to the theoretical CE the out-of-sample CE’s are substantially

smaller. The strategy yielding the highest theoretical CE (γ = 8, yellow line), dominates the

other strategies only slightly and only if the asset universe is small. Moreover, for most γ-values

the difference is negative indicating the dominance of the equally weighted portfolio. The lower

panels provide more insight into the pathology of this finding. The lower-left plot depicts the size

of the within-sample estimation risk (second term of (3)), which due to its relative size clearly

determines the shape of the theoretical out-of-sample curves. The larger the asset universe the

lower the precision of the weight estimates.

The size of risk aversion parameter plays a crucial role for the out-of-sample performance.

1 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html, monthly excess returns
of 100 industry portfolios.
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Figure 1: CE and Out-of-sample CE Differences
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Average CE differences over 5 000 random N out of 100 asset combinations for GMVP and equally weighted

portfolio by dimension of the asset universe N for different values of the risk aversion parameter γ. The estimation

window length T is set to 120 (10 years of monthly observations). Upper-left plot: difference in theoretical CE,

∆0(s, s̃). Lower-left plot: estimation noise penalty. Lower-right plot: out-of-sample risk penalty. Upper-right plot:

overall out-of-sample CE difference as given in (5).

It determines how strongly the out-of-sample CE is penalized by the presence of estimation

noise. Consequently, the choice of a very low risk aversion parameter is not just a matter of

economic reasoning, it seriously twists the empirical findings in favor of theory based approaches.

Therefore, for the sake of scientific clarity, findings of empirical horse races should be reported

for a range of γ-values. The plot on the lower-right depicts the out-of-sample risk penalty. This

effect points in the same direction as the within-sample effect. However, the dimension of this

effect is considerably smaller. All in all from Figure 1 we can conclude that the out-of-sample

performance of tests against the equally weighted portfolio strategy are to a large extend driven

by the estimation risk. The performance of the equally weighted portfolio mainly results from

boiling down estimation risk to zero at a comparatively small cost of following a theoretical

inferior strategy.
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iv.) Empirical out-of-sample performance

The empirical out-of-sample performance measure is widely used in applied work to compare

the performance of different portfolio strategies. Here µop(s) and σ2
op(s) are replaced by their

sample counterparts based on data from an evaluation sample of size H:

ĈEop(ω̂t(s)) = µ̂op(s)−
γ

2
σ̂2
op(s), (6)

where: µ̂op(s) =
1

H

H∑
h=1

r̂pt+h(s) =
1

H

H∑
h=1

ω̂t+h−1(s)′rt+h,

σ̂2
op(s) =

1

H − 1

H∑
h=1

(
r̂pt+h(s)− µ̂op(s)

)2
.

The large sample properties of µ̂op(s) and σ̂2
op(s) depend on which type of limiting behavior

is considered. Obviously, with an increasing sample size T , holding the size of evaluation window

fixed, we obtain

plim
T→∞
H=const.

µ̂op(s) = ω(s)′r̄H and plim
T→∞
H=const.

σ̂2
op(s) = ω(s)′Σ̂Hω(s)′, (7)

where r̄H and Σ̂H denote the sample mean and the sample covariance for a sample of size H.

Both estimators are converging to random variables whose variance depends on the size of the

evaluation window. For T →∞ and H fixed ĈEop(ω̂t(s)) remains a random variable due to the

sampling variation present in r̄H and Σ̂H . Therefore, opting solely for a large sample size T is

not really helpful, if evaluation window H is small. Moreover, due to the presence of potential

structural breaks it is also reasonable for applied researchers to base the weight estimates on

more recent samples.

Alternatively, consider the limiting case for the evaluation window holding T fixed. Under

the assumption of independence this yields:

plim
T=const.
H→∞

µ̂op(s) = E
[
r̂pt+h(s)

]
= µop(s) and plim

T=const.
H→∞

σ̂2
op(s) = σ2

op(s). (8)

Only for the case of H →∞ and T →∞ the empirical out-of-sample ĈEop(ω̂t(s)) converges to
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the theoretical CE(ω(s)), as with increasing estimation sample size the estimation risk vanishes.

In order to stabilize the out-of-sample portfolio returns it is common to hold the estimated

portfolio weights fixed over a certain range of the evaluation window (Golosnoy and Okhrin

(2007)). By changing the weights less frequently than in the rolling window scenario assumed

above, the volatility of the out-of-sample return process is reduced. However, such a strategy

is somewhat problematic, if the goal is to obtain a consistent estimate of CEop. This becomes

obvious by considering the most extreme case when the whole out-of-sample return series is

based on a single estimate of the weight vector r̂pt+h(s) = ω̂t(s)
′rt+h. Contrary to (8) the mean

and the variance of the out of sample return remain random variables with

plim
T=const.
H→∞

µ̂op(s) = ω̂t(s)
′µ and plim

T=const.
H→∞

σ̂2
op(s) = ω̂t(s)

′Σ ω̂t(s). (9)

In this case the corresponding limiting CE remains a random variable, where ω̂t(s) serves as a

time invariant random effect.

In the following we use the out-of sample CE difference based on (5) to define the null

hypothesis of equal performance of two strategies as well as for defining the deviation from

the null for our power analysis. This theoretical parameter to be tested is estimated by

∆̂op(s, s̃) = ĈEop(ω̂t(s)) − ĈEop(ω̂t(s̃)) as defined in (6). As shown below, the bivariate out-

of-sample return processes (r̂pt+h(s), r̂pt+h(s̃))′, on which ∆̂op(s, s̃) is estimated, reveals specific

properties which deviate from the return processes usually assumed in simulation studies.

2.2 Out-of-sample return distribution

The testing procedure by Ledoit and Wolf (2008) is most frequently used to test portfolio

performance. They propose to estimate the confidence bands for the difference in two portfolio

performance measures ∆̂ and to check via the bootstrap how often the parameter value ∆ = 0

lies within the estimated confidence bands. The Monte-Carlo evidence provided by Ledoit and

Wolf (2008) rests on the assumption that the joint distribution of the two competing return

series comes from a bivariate data generating process with marginal distributions belonging to

the same family. They argue that such an assumption is reasonable, if the two return series

under consideration are, for instance, return series of two hedge funds (e.g. a bivariate GARCH

process). However, a large fraction of the literature (DeMiguel et al. (2009b), Brodie et al.
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(2009), Antoine (2012)) is concerned with the out-of sample performance of portfolio strategies

based on the same set of assets. As shown below, the fact that the out-of-sample returns are

generated from the same underlying return distribution implies certain properties that should

be accounted for in the Monte-Carlo design. In the following we will focus on the out-of sample

return series of two portfolio strategies based on estimated portfolio weights. In such a scenario

the out-of-sample portfolio return series follow a mixture distribution depending on the return

vector, but also on the estimated portfolio weights. The distribution of the estimated portfolio

weights, however, depends strongly on the portfolio strategy as well as on the estimator chosen.

We illustrate the argument by comparing the out-of-sample return series for two competing

portfolio strategies s and s̃ whose performance is to be tested. The distribution function of the

portfolio return for the same strategy based on estimated weights, r̂pt+1(s) = ω̂t(s)
′rt+1, takes

the form

f
(
r̂pt+1(s)

)
= f

(
ω̂t(s)

′rt+1

)
= f

(
ω̂t(s)

′rt+1|ω̂t(s)
)
· g
(
ω̂t(s)

)
, (10)

where g
(
ω̂t(s)

)
is the marginal distribution of the portfolio weight estimator. Depending on

the portfolio strategy and the chosen estimator the marginal distribution varies substantially.

Assuming rt
iid∼ N (µ,Σ) for the return process, Okhrin and Schmid (2006) show that the (plug-in)

estimator for the Global Minimum Variance Portfolio (GMVP) weights follow a multivariate

elliptical t-distribution. The portfolio return conditional on the estimated weights would still be

normally distributed with

r̂pt+1(s)
∣∣
ω̂t(s)

∼ N
(
ω̂t(s)

′µ, ω̂t(s)
′Σω̂t(s)

)
,

but the unconditional distribution (10) becomes fat tailed through the estimation uncertainty

reflected by g
(
ω̂t(s)

)
. Obviously for any strategy with known portfolio weights, such as the

equally-weighted (1/N) strategy, the distribution remains normal. An extreme case of the

out-of-sample return distribution occurs for the plug-in estimator of the tangency portfolio,

where the distribution of the portfolio weight estimates has no first and second moments and

follow a multivariate type of Cauchy distribution (Okhrin and Schmid, 2006)2.

2Note that in the literature the use of the term tangency portfolio is not unique. Here we follow, e.g. Britten-Jones

(1999) and define the tangency portfolio as the one which is tangent to the minimum-variance bound such that the weights
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Consider now the bivariate distribution for an out-of-sample return process for strategy s

based on estimated portfolio weights and strategy s̃ based on non-stochastic portfolio weights.

The joint distribution of the portfolio returns is given by a bivariate mixture distribution of the

form

f
(
r̂pt+1(s), rpt+1(s̃)

)
= f

(
ω̂t(s)

′rt+1, ωt(s̃)
′rt+1|ω̂t(s)

)
· g
(
ω̂t(s)

)
. (11)

For the case of i.i.d. normality of the return process the bivariate density conditional on the

estimated weights is given by

r̂pt+1(s)

rpt+1(s̃)


∣∣∣∣∣∣∣
ω̂t(s)

∼ N


ω̂t(s)′µ
ωt(s̃)

′µ

 ,
ω̂t(s)′Σω̂t(s) ω̂t(s)

′Σωt(s̃)

ωt(s̃)
′Σω̂t(s) ωt(s̃)

′Σωt(s̃)



.

The mixture distribution (11) results from the underlying estimation strategy of the weights.

Note that the mixture distribution out-of-sample portfolio returns implies fat tails even under

i.i.d. normality of the original return process and without imposing any GARCH structure.

Appendix A.1 reports descriptive statistics of the monthly return data on 30 industry

portfolios from K.R. French’s website for the period from January 1953 until December 2015

and the properties of the out-of-sample portfolio returns based on this dataset. We consider 3

portfolio allocation strategies: equally weighted portfolio (s = e), Global Minimum Variance

Portfolio (s = g), the ridge covariance matrix estimator combined with the GMVP (s = g(λ))

where the penalty parameter λ is chosen according to Ledoit and Wolf (2003)). In Table 6 we

report the average descriptive statistics of the returns in the dataset alongside the properties of

the average return, which has a significant sample mean of 0.7%, is left-skewed and heavy-tailed.

The GMVP return is not skewed but still heavy-tailed. Ridging the covariance matrix shrinks

the GMVP weights to the 1/N , therefore the empirical properties of the ridged GMVP return

are closer to ones of the equally weighted portfolio. Furthermore, as can be seen on Figure

5, the out-of-sample portfolio returns do not possess any significant autocorrelation or partial

autocorrelation.

We now compare the proposed mixture distribution given in (11) with the simulation designs

add up one, i.e. ω(tan) = Σ−1µ
ι′Σ−1µ

.
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Figure 2: Marginal distribution of the out-of-sample portfolio returns: N = 30
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Marginal distribution of the out-of-sample portfolio returns for the GMVP (r̂p(GMV P )) and equally weighted
portfolio (r̂p(1/N)): based on the real data (in red), simulated from bivariate t5 (dashed black), simulated from
bivariate normal (dotted black) and simulated from the proposed mixture design (in blue). The mean and standard
deviation of the simulated returns are adjusted to be the same as of the empirical portfolio returns.

commonly used in the literature in terms of the ability to capture the properties of the empirical

out-of-sample portfolio returns. Figure 2 depicts marginal kernel densities of the out-of-sample

portfolio returns based on the actual data together with the density of the simulated out-of-sample

returns. Left panel corresponds to the marginal density of the GMVP returns and right panel

corresponds to the returns of the equally weighted portfolio. The black dotted lines correspond

to marginal densities of the portfolio return for a given strategy when the returns are drawn

from the bivariate normal distribution using the sample mean and sample covariance matrix of

the actual out-of-sample returns. The black dashed lines correspond to the marginal densities

from a bivariate t-distribution with 5 degrees of freedom. The blue lines depict the marginal

densities for the proposed mixture design in (11). In Table 7 we report empirical moments of

the out-of-sample portfolio returns, computed on the real data and empirical moments of the

simulated out-of-sample returns. The main difference in the simulation designs comes from the

differences in the third and fourth empirical moments. If the out-of-sample returns are drawn

from a bivariate normal distribution, the sample skewness and sample kurtosis tend to be smaller

than the desired values. On the other hand, returns generated from the bivariate t-distribution
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reveal too much leptokurtosis and skewness compared to the empirical out-of-sample returns.

As the proposed mixture design captures the empirical properties of the out-of-sample returns

more accurately than the competing designs, we use it in our simulation study when addressing

the size and power properties of portfolio performance tests.

3 Size and Power of Performance Tests

3.1 Monte Carlo Design

In the following we examine the statistical properties of the out-of-sample portfolio performance

tests by means of a Monte Carlo study. We concentrate on the performance tests of different

empirical strategies against the equally weighted portfolio ω(s̃) = ω(e) = 1
N ι. This strategy is

frequently taken as a benchmark in many empirical applications and often cannot be significantly

outperformed by more sophisticated portfolio strategies. As a competing strategy we first

consider the plug-in estimated GMVP ω̂(s) = ω̂(g) =
Σ̂−1ι

ι′Σ̂−1ι
, which is particularly appealing

for a simulation study as a closed-form solution of the distribution function f(ω̂(g)) exists from

which ω̂(g) can be drawn. The second alternative strategy to be considered is the GMVP

combined with the ridge estimator of the covariance matrix, ω̂(g(λ)) =
(Σ̂ + λIN )−1ι

ι′(Σ̂ + λIN )−1ι
, where λ

denotes the shrinkage parameter and IN the identity matrix of dimension N . Following on we

use the Ledoit and Wolf (2003) approach for choosing the optimal shrinkage intensity of the

covariance matrix.

The simulation study below is conducted as follows. Under normality of the underlying

return process, rt
iid∼ N (µ,Σ), the vector of portfolio weights is drawn according to Okhrin and

Schmid (2006) from the multivariate elliptical t-distribution with parameters (Σ, N , T ) from

which, in a second step, the bivariate vector of out-of-sample portfolio returns is drawn according

to the mixture distribution in (11). The parameters (µ,Σ) for the return process are set to the

sample mean and variance of the monthly return data on 30 industry portfolios of Kenneth R.

French3. We define the expected CE difference of the two competing strategies s and s̃ under the

null according to (5). Under the null the difference in the out-of-sample CE’s is a pre-specified

value ∆∗. Thus the hypothesis to be tested is ∆op(s, s̃)−∆∗ = 0.

When addressing the power properties of the tests, we simulate the out-of-sample returns

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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such that under the alternative the actual CE difference exceeds the CE difference hypothesized

under the null by 1% in annual terms. We control the data generating process by decreasing

the volatility and the corresponding covariances of one particular asset. The goal of being able

to protect a 1% annual return difference does not seem overly ambitious given that the annual

out-of-sample CE of the equally weighted portfolio is around 6% for our sample.

Table 8 in Appendix A.2 reports the values of the expected CE difference under the null and

the alternative and its annualized counterparts for a given pair of strategies, risk aversion γ and

estimation window length T . For example, for N/T = 0.01 and γ = 3 the monthly expected

CE difference between GMVP and equally weighted portfolio under the null is 0.08% and it

becomes 0.16% under the alternative. These differences correspond to a 0.94% annual difference

under the null and 1.94% under the alternative. Thus in monthly terms under the alternative

the underlying CE difference is at least twice as large as under the null and one would expect

the test to reject the null hypothesis in such a set up.

In order to check for the impact of estimation noise on the performance of the tests, we

consider different N/T ratios. Figure 6 depicts the histograms of the variance of the GMVP

portfolio returns for different estimation noise ratios. Clearly, the larger the ratio, the more

skewed the distribution of the portfolio variance. These skewness properties translate into the

distribution of the out-of-sample CE difference, scaled by −γ
2 . Therefore, the larger the risk

aversion parameter the more left-skewed the distribution of the CE difference. As we will show

below, the skewness property leads to size distortions for some tests particularly if two sided

hypotheses are to be tested.

The significance of the CE difference is tested by the means of the Student t-test. The

standard error of the CE difference is either computed using the Delta method or the bootstrap.

The Delta method for testing the difference in CE of the two strategies (s, s̃) is given by:

∆op = f(ϑ) = (µop(s)−
γ

2
σ2
op(s))− (µop(s̃)−

γ

2
σ2
op(s̃)) (12)

√
H
(
∆̂op(s, s̃)−∆op(s, s̃)

) d→ N
(

0,
∂f(ϑ)

∂ϑ

′
V [ϑ̂]

∂f(ϑ)

∂ϑ

)
, (13)

where ϑ = (µop(s), σ
2
op(s), µop(s̃), σ

2
op(s̃))

′ is the vector of the mean and variance of portfolio

returns, the covariance matrix V [ϑ̂] has a well-known form (DeMiguel et al. (2009b)).

Another way of obtaining the standard error for the CE difference is the non-parametric
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bootstrap, where the bivariate vector of the out-of-sample portfolio returns is sampled with

replacement, resulting in the empirical distribution of the CE difference and the t-statistics. We

first consider the percentile bootstrap, where the null is rejected if ∆̂op(s, s̃)−∆∗ > q∆(1−α/2)

or ∆̂op(s, s̃) − ∆∗ < q∆(α/2), where q∆(·) is the quantile of the bootstrap distribution of

∆̂b
op(s, s̃)− ∆̂op(s, s̃), with ∆̂b

op(s, s̃) denoting the estimated out-of-sample CE difference of the

bootstrap sample. Another way of utilizing the bootstrap distribution is approximating the

quantiles of the test statistic. For this case the null hypothesis is rejected if
∆̂op(s, s̃)−∆∗

s.e.[∆̂op(s, s̃)]
>

qt(1 − α/2) or if
∆̂op(s, s̃)−∆∗

s.e.[∆̂op(s, s̃)]
< qt(α/2), where s.e.[∆̂op(s, s̃)] is computed by the Delta

method and qt(·) denotes the bootstrap quantile of
∆̂b
op(s, s̃)− ∆̂op(s, s̃)

s.e.[∆̂b
op(s, s̃)]

, where the standard

error is computed via Delta method for each bootstrap sample.

Ledoit and Wolf (2008) emphasize that the circular block-bootstrap based test accounts for

the time series dependence of return series, which, for instance, may be crucial if the return series

of two hedge funds are to be compared. However, a large fraction of empirical studies applying

their tests to check for the out-of-sample performance of Markowitz type portfolio strategies

are based on monthly return data. As shown in Figure 5, these monthly out-of-sample returns

show no significant autocorrelation regardless of the underlying empirical portfolio strategy.

Therefore it is not too surprising that in our simulations the results obtained for the circular

block-bootstrap based tests hardly differ from the ones obtained by assuming uncorrelatedness

in out-of-sample return process. For the sake of brevity, we do not report the results based on

the circular block-bootstrap.

For each pair of strategies we consider different out-of-sample horizon lengthsH = 100, 500, 1000,

which govern the speed of convergence of the out-of-sample CE to its true value. The number of

Monte Carlo simulations is 50 000 for all designs. For the bootstrap-based tests we use 5 000

replications. For the level of risk aversion we consider the values γ = 0.5, 1, 3.

3.2 Test Properties

We first consider the testing properties for the GMVP (ω(g)) versus the equally weighted

portfolio (ω(e)) case. Table 1 reports the empirical Type I error of the tests for a given nominal

significance level of 5% and for a very low N/T ratio. For instance, for a portfolio with N = 30

assets the ratio N/T = 0.01 requires an estimation window of T = 3000 observations. We
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consider this scenario mainly for illustrative purposes, since for this case the estimated GMVP

weights are very close to their theoretical values, so that the sampling error is mainly due to the

testing horizon.

Table 1: Empirical rejection probabilities under H0 for GMVP vs 1/N. α = 5%. N/T = 0.01

Two-sided One-sided

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

γ = 0.5 0.0539 0.0505 0.0542 0.0520 0.0503 0.0520

H = 100 γ = 1.0 0.0544 0.0508 0.0547 0.0522 0.0502 0.0523

γ = 3.0 0.0547 0.0504 0.0549 0.0515 0.0504 0.0519

γ = 0.5 0.0540 0.0532 0.0541 0.0514 0.0511 0.0517

H = 500 γ = 1.0 0.0536 0.0531 0.0540 0.0522 0.0518 0.0523

γ = 3.0 0.0543 0.0538 0.0545 0.0512 0.0513 0.0514

γ = 0.5 0.0564 0.0564 0.0566 0.0537 0.0535 0.0538

H =1000 γ = 1.0 0.0561 0.0561 0.0565 0.0530 0.0528 0.0529

γ = 3.0 0.0563 0.0559 0.0564 0.0519 0.0525 0.0523

Figures in the table correspond to the share of Monte Carlo draws where the null hypothesis was rejected (out of
50 000 draws). H denotes the out-of-sample evaluation window length and γ denotes risk aversion coefficient.

As was previously pointed out, in the presence of negligible within-sample estimation noise

the estimated out-of-sample CE for a fairly large out-of-sample evaluation horizon H equals

the true out-of-sample CE. Noticeably, different testing methods, i.e. Delta method, percentile

and t-bootstrap yield very similar results for different combinations of H and γ. For all tests

and designs we do not find any substantial size distortions, i.e. the empirical null rejection

probabilities are very close to the nominal value of 5%. The bootstrap percentile method

outperforms slightly the two other methods in terms of minimizing size distortions for most of

the scenarios.

However, for this best case scenario in terms of estimation precision the picture changes

when the power properties of the different tests are considered. For the analysis of the power

properties we assume that the two out-of-sample CEs differ by additional annualized rate of 1%,

which we regard as being not an unrealistic value. As reported in Table 2 we find substantial

differences in empirical rejection probabilities under the alternative hypothesis. Generally, the

power of the considered tests is low, especially for the shorter out-of-sample evaluation periods

H. Our findings for this best case scenario clearly point out that the low power properties of the

tests largely explain the non-rejection of null hypothesis of equal performance often found in the
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Table 2: Power at 1% expected CE difference for GMVP vs 1/N. α = 5%. N/T = 0.01

Two-sided One-sided

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

γ = 0.5 0.0625 0.0588 0.0630 0.0871 0.0845 0.0875

H = 100 γ = 1.0 0.0622 0.0581 0.0624 0.0851 0.0825 0.0855

γ = 3.0 0.0618 0.0587 0.0625 0.0830 0.0818 0.0842

γ = 0.5 0.0875 0.0868 0.0874 0.1399 0.1396 0.1404

H = 500 γ = 1.0 0.0903 0.0896 0.0906 0.1405 0.1405 0.1408

γ = 3.0 0.0876 0.0875 0.0877 0.1368 0.1375 0.1375

γ = 0.5 0.1280 0.1276 0.1283 0.1993 0.1992 0.1999

H =1000 γ = 1.0 0.1271 0.1267 0.1272 0.1952 0.1956 0.1960

γ = 3.0 0.1227 0.1238 0.1229 0.1922 0.1933 0.1928

Figures in the table correspond to the share of the Monte Carlo draws where the null hypothesis was rejected (out
of 50 000 draws). H denotes the out-of-sample evaluation window length and γ denotes risk aversion coefficient.

literature. It is important to note, that the power properties of the one-sided tests are better than

the two-sided ones. However, even under unrealistic but favorable parameter constellations the

tests have very high false negative rates, i.e. they are not able to report a significant difference

in the CEs with probability of approximately 80%.

Increasing the N/T ratio reveals quite similar patterns. Table 10 in Appendix A.2 reports the

null rejection probabilities for the lower N/T = 0.1 ratio, where we find minor size distortions. As

pointed out at the beginning of this Section, the distribution of the CE difference in the presence

of the estimation noise becomes left skewed due to the right skewed distribution of the GMVP

portfolio variance. The left quantile of the distribution of the CE difference becomes smaller,

thus the normal approximation of the Delta method overestimates the left quantile, which

results in the over-rejections of the null hypothesis and the problem becomes more severe with

increase in γ. Besides, with an increase in the out-of-sample horizon H the skewness becomes

more pronounced, therefore, the size distortions increase with H. Noticeably, the two-sided

percentile and t-bootstrap do not perform any better than the two-sided Delta method, as the

bootstrap generally approximates the asymptotic distribution of the underlying test statistic,

and estimation noise is the finite sample feature. Nevertheless, the size distortions in this case is

not a huge problem, as for the worst case scenario of large γ and H the maximum over-rejection

rate is 5%. Most importantly, the one-sided tests, i.e. the null hypothesis ∆op(s, s̃)−∆∗ < 0,

effectively use only the right quantile of the distribution and therefore avoid the left-skewness
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problem and do not suffer from the size distortions.

In Table 3 we report empirical null rejection probabilities under the alternative for N/T = 0.1.

The power of the tests increases with the out-of-sample evaluation window and one-sided tests

have on average 2-5% more power. Tables 9 and 11 in A.2 report the power properties of the

tests under rather unrealistic CE differences, i.e. the case when under the alternative the actual

CE difference exceeds the CE difference hypothesized under the null by 5% in annual terms.

This for example implies 0.48% expected CE difference in monthly terms and 5.91% in annual

terms for the N/T = 0.01 and γ = 3. Obviously, when the distance between the null and the

alternative gets extremely large, the tests gain up to 90% power. Our findings strongly suggest

to use the one-sided hypothesis testing in the favor of the commonly used two-sided hypothesis

for two reasons: they do not use the left quantile of the distribution and have better power

properties.

Table 3: Power at 1% expected CE difference for GMVP vs 1/N. α = 5%. N/T = 0.1

Two-sided One-sided

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

γ = 0.5 0.0637 0.0593 0.0636 0.0822 0.0783 0.0821

H = 100 γ = 1.0 0.0648 0.0608 0.0654 0.0827 0.0804 0.0833

γ = 3.0 0.0618 0.0585 0.0623 0.0759 0.0744 0.0769

γ = 0.5 0.0998 0.0994 0.1006 0.1422 0.1414 0.1424

H = 500 γ = 1.0 0.1000 0.0995 0.1005 0.1417 0.1409 0.1416

γ = 3.0 0.0965 0.0955 0.0964 0.1280 0.1279 0.1279

γ = 0.5 0.1530 0.1529 0.1535 0.2088 0.2087 0.2090

H =1000 γ = 1.0 0.1498 0.1499 0.1507 0.2055 0.2056 0.2059

γ = 3.0 0.1430 0.1434 0.1436 0.1843 0.1847 0.1847

Figures in the table correspond to the share of the Monte Carlo draws where the null hypothesis was rejected (out
of 50 000 draws). H denotes the out-of-sample evaluation window length and γ denotes risk aversion coefficient.

The Receiver Operating Characteristics (ROC) curves based on our simulations provide more

insights into the optimal trade-off between Type I error (false positive rate, sensitivity) and power

(true positive rate, specificity). Figure 3 depicts those for different parameter constellations for

the tests based on the Delta method: The graph in the upper-left panel compares the ROC

curves of one-sided tests for different out-of-sample horizons H, the upper-right panel depicts

the ROC for different estimation noise ratios N/T and lower-left panel reports the ROC for

two-sided and one-sided tests.
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Figure 3: ROC for different parameter constellations
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Upper-left panel: ROC of one-sided Delta method with γ = 1, N/T = 0.01 and different out-of-sample horizons H.

Upper-right panel: ROC of one-sided Delta method with γ = 1, H = 1000 and different estimation noise ratios

N/T . Lower-left panel: ROC of one-sided and two-sided Delta method with γ = 1 and H = 1000. Lower-right

panel: ROC for one-sided Delta method with γ = 1, H = 1000, N/T = 0.01 for different pairs of strategies to be

tested. For each test we report the Youden’s J-statistic computed as the maximum difference between The ROC

curve and the 45-degree line indicating the case of random guessing.

Different ROC curves can be compared by the means of Youden’s J statistic which gives the

most informative combination of empirical power and empirical size of the test over the range of

nominal significance levels α. Since the size distortions are negligible (α ≈ α̂), we can see that for

conventional nominal significance levels (α = 0.01, 0.05) the ROC-curves are only sightly above

the 45-degree line, i.e. choosing the portfolio strategies based on the performance tests leads to

a classification which is only slightly superior to random classification. The best classifications

in terms of Youden’s J-statistic can be obtained for α-values larger than 0.2. Enlarging the size

of the evaluation window by a factor of 2 (upper-left panel) or the sample size by a factor of 10

(upper-right panel) only leads to moderate improvements in the ability of the test to classify the

competing strategies correctly. A stronger improvement in terms of Youden’s J-statistic can be

obtained by choosing a one-side test over a two-sided one (lower-left panel).

Ridging the GMVP (lower-right panel) also yields strong improvements of the test to

classify correctly. The ROC for testing the ridged GMVP against equally weighted portfolio
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is substantially higher than the one for the first pairs of strategies, implying the higher power

for a given size of the considered test. Note that the cross-sectional correlation of returns from

the tuple of strategies, (ω(g(λ)), ω(e)), is stronger than that of the tuple, (ω(g), ω(e)), as with

increasing the shrinkage parameter ω(g(λ)) moves closer to the case of equal weights, with

ω(g(λ)) = ω(e) for the ridge penalty parameter λ→∞. Consequently the correlation between

the two estimated certainty equivalents increases, which leads to a lower standard error of the

out-of-sample CE difference and improves the performance of the tests. Appendix A.2 provides

detailed results on the size and power properties for different parameter constellations.

Summing up, the power of portfolio performance tests is rather low, independently of the

testing method used. In any case the one-sided tests perform better than their two sided

counterparts, i.e. they have higher power for a given size. Furthermore, the correlation between

the compared out-of-sample portfolio returns plays a huge role, i.e. the choice of the benchmark

strategy is crucial. The equally weighted portfolio can be regarded as a particularly unlucky

choice, as its weights are often uncorrelated with the competing strategy’s weights, which leads

to the huge standard errors of the performance measure difference and lower power of the test.

For an applied researcher the low testing power implies that despite having a strategy that is

truly superior to the benchmark, the test will not be able to reject the null of equal performance

with a high probability .

4 Power-optimal Pretest Portfolios

For any classical test the choice of an appropriate significance level depends on the type of

decision to be made given the outcome of the test. More specifically, in some circumstances it

might be reasonable to select a lower significance level (higher probability of a Type I error)

than a conventional one in order to increase the probability of rejecting the benchmark strategy.

For the problem of deciding between two portfolio strategies in the presence of low power this

implies assigning to the alternative a higher probability to be pursued if it is truly superior.

In the following we examine the role of the significance level for designing a pretest estimator

which uses the estimates of the two strategies depending on the test outcome. Consider the true

expected CE difference of two competing portfolio strategies ∆op(s, s̃). The goal is to choose

either strategy s or strategy s̃ depending on the test outcome. Null and alternative hypotheses
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take the usual one-sided form:

H0 : ∆op(s, s̃) ≤ 0 and H1 : ∆op(s, s̃) > 0. (14)

Let the pretest estimator of the portfolio weights forecasts for t + 1 be such that it depends

either on strategy s in case the null is rejected or on s̃ otherwise:

ωt(s, s̃) = 1l
(
∆̂op(s, s̃) > ∆∗(α)

) (
ωt(s)− ωt(s̃)

)
+ ωt(s̃), (15)

with the estimated CE difference ∆̂op(s, s̃) = ĈEop(s)− ĈEop(s̃) and the critical value ∆∗(α)

for significance level α. Moreover, assume as a thought experiment that the test result is given

at t+ 1, so that the investor knows ex-ante, which strategy will be preferred according to the

test. Based on ωt(s, s̃) the corresponding pretested out-of-sample CE takes the form:

ĈEop(s, s̃) = 1l
(
∆̂op(s, s̃) > ∆∗(α)

)
∆̂op(s, s̃) + ĈEop(s̃).

For a dominating strategy s the expected CE of the pretest estimator takes the form:

E
[
ĈEop(s, s̃)

∣∣∣∆op(s, s̃) > 0
]

= π(α) E
[

∆̂op(s, s̃)
∣∣∣ ∆̂op(s, s̃) > ∆∗(α)

]
+ E

[
ĈEop(s̃)

]
, (16)

where π(α) is the power of the test. Although s is dominating s̃ by assumption, for a test with

low power the pretest estimator hardly outperforms strategy s̃, because the first term on the

right hand side of (16) is close to zero for conventional choices of the significance level. Moreover

the dependence of the expected difference between the pretest CE, E
[
ĈEop(s, s̃)

∣∣∣∆op > 0
]
, and

the benchmark strategy E
[
ĈEop(s̃)

]
on α is undetermined, because

∂ E[ ĈEop(s,s̃)|∆op>0]
∂α ≷ 0.

The pretesting idea, however, can be used to construct an empirically feasible portfolio

allocation strategy. Assume that at time t an investor relies on the test in order to choose

the strategy for the next period t + 1, i.e. an investor performs a one-sided test for the CE

difference ∆̂op(s, s̃) = ĈEop(s)− ĈEop(s̃) and chooses to use strategy s if the null of the inferior

performance is rejected. However, choosing the lower significance level, i.e. increasing the

probability of Type I error, and at the same time improves the power properties. Thus, there

exists an optimal α for the test, which results in the higher out-of-sample CE.
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For illustrative purposes consider testing the CE difference of the GMVP (ω̂t(s), s = g) and

the equally weighted portfolio (ω̂t(s̃), s̃ = e). For a grid of α-values we perform a one-sided test

and choose the GMVP strategy for the next period if the null hypothesis is rejected. Figure 4

Figure 4: Pretesting strategy: illustration.
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ĈE(s, s̃)
α = 5%

Pretesting strategy: GMVP vs 1/N , γ = 1. K.R. French data on 5 industry portfolios with estimation window
length of T = 60 (5 years of monthly observations), corresponding to N/T = 0.08 ratio. Dashed line corresponds
to the conventional α = 5%.

illustrates the empirical application of such strategy. The red line corresponds to the out-of-

sample CE if the strategy s is chosen over the whole out-of-sample horizon. The black line is

the corresponding out-of-sample CE for the equally weighted portfolio. The dots denote the

resulting out-of-sample CE, where the choice of the next period’s strategy is based on testing

for different significance levels. Clearly, the exercise shows that by choosing higher α than a

conventional one (values to the right of the straight line which indicates an α of 5 % ) an investor

can expect a higher CE. The relationship between the pretested CE and the significance level is

non-monotonic, so that local optima occur.

However, as indicated above, this strategy is infeasible, as the investor has to know the

outcome of the test at the same time when deciding between ωt(s) and ωt(s̃). As a feasible

solution we propose to choose the significance level α, which maximizes the in-sample CE

difference. First, at time t the weights of the two competing strategies ω̂t(s) and ω̂t(s̃) are

estimated based on the sample {t− T, . . . , t}. The estimated within sample CE for the strategy
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s is computed as

ĈEin(s|t− T, ..., t) = ω̂t(s)
′r̄t −

γ

2
ω̂t(s)

′Σ̂tω̂t(s), (17)

where r̄t denotes the sample mean and Σ̂t the sample covariance matrix of the returns based

on the estimation window {t − T, . . . , t}. The in-sample CE difference ∆̂in(s, s̃|t − T, ..., t) =

ĈEin(s|t− T, ..., t)− ĈEin(s̃|t− T, ..., t) can be tested against zero by the means of one-sided

test as specified in (14). Analogously the in-sample pretest CE can be defined as

CE∗in(α, s, s̃|t−T, ..., t) = 1l
(
∆̂in(s, s̃|t−T, ..., t) > ∆∗(α)

)
∆̂in(s, s̃|t−T, ..., t)+ĈEin(s̃|t−T, ..., t)

and can be computed for the grid of α. Finally, the in-sample CE optimizing significance level

α∗t is chosen for the test, determining the strategy for the next period t+ 1:

α∗t+1 = arg max
α

CE∗in(α, s, s̃|t− T, ..., t). (18)

The above procedure is repeated with every shift of the estimation window. In practice this

results in a very unstable series of significance level choices {α∗t+1, ...α
∗
t+H}, as the choice of α∗t+1

is data driven and also depends on the instable estimates of the portfolio weights. On the other

hand, the sequence of α∗’s along the rolling estimation window takes into account changes of

the return process across time, e.g. volatility regimes.

In order to mitigate the instability problem we suggest two alternative ways of stabilizing

this pretesting strategy. The first one is in the line of James-Stein type of shrinkage by shrinking

α∗t+1 towards a target α0, e.g. to the conventional 5% level

αst+1 = (1− λ)α∗t+1 + λα0, (19)

where 0 ≤ λ ≤ 1 is the shrinkage parameter to be chosen by the investor. Thus with an increase

of the shrinkage parameter αst+1 becomes more stable across time.

The second way of stabilizing the α∗-estimates is to smooth the series adaptively according

to

αmt+1 = (1− λ)α∗t+1 + λαmt , (20)

where the tuning parameter λ is chosen to control the degree of smoothness. Contrary to the
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shrinkage method the adaptive smoothing takes into account not only the latest optimal choice

but also the previous estimates with geometrically decaying weights. Both αst+1 and αmt+1 require

the choice of λ, which can be optimized both in-sample and out-of-sample.

We demonstrate the performance of the feasible pretesting algorithms described above

for a dataset containing 100 assets in total4, from which we form portfolios of different sizes

N = {5, 30, 50}. We consider different combinations of risk aversion parameters γ = {0.5, 1, 3}

and estimation window sizes T = {60, 120}. The performance of the considered strategies is

evaluated based on the out-of-sample CE averaged over a 1000 Monte-Carlo iterations. For each

considered portfolio size we randomly draw N assets from the available dataset, compute the

out-of-sample CE and repeat the procedure 1000 times. In Table 4 we report the average of the

annualized out-of-sample CEs.

Table 4: Average out-of-sample CE: empirical application.

T=60 T=120

γ=0.1 γ=1 γ=3 γ=0.1 γ=1 γ=3

N=5

GMVP 0.0898 0.0755 0.0470 0.0858 0.0722 0.0427

1/N 0.0929 0.0777 0.0417 0.0885 0.0721 0.0367

In-sample 0.0957 0.0806 0.0496 0.0905 0.0756 0.0438

Shrinking 0.0948 0.0794 0.0456 0.0908 0.0749 0.0405

Smoothing 0.0984 0.0830 0.0516 0.0931 0.0778 0.0455

N=30

GMVP 0.0839 0.0662 0.0355 0.0829 0.0733 0.0492

1/N 0.0930 0.0784 0.0459 0.0893 0.0738 0.0407

In-sample 0.0962 0.0793 0.0468 0.0969 0.0821 0.0517

Shrinking 0.0938 0.0782 0.0460 0.0926 0.0783 0.0481

Smoothing 0.0997 0.0837 0.0525 0.0968 0.0832 0.0536

N=50

GMVP 0.0732 0.0335 -0.0479 0.0848 0.0730 0.0484

1/N 0.0934 0.0784 0.0460 0.0891 0.0737 0.0409

In-sample 0.0947 0.0646 -0.0030 0.1033 0.0876 0.0543

Shrinking 0.0958 0.0730 0.0223 0.0940 0.0803 0.0532

Smoothing 0.0969 0.0727 0.0175 0.1016 0.0865 0.0567

Figures in the table correspond to the average annualized out-of-sample CE over 1000 randomly formed portfolios
of the specified size. T denotes the estimation window length, γ denotes risk aversion coefficient and N is the
number of assets. The numbers in bold correspond to the largest CE obtained for a given γ,N, T combination.
The tuning parameter λ for both shrinking and smoothing the α∗ series is set to be 0.5.

4The data is taken from K.R.French website and contains monthly excess returns from 01/1953 till 12/2015.
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The results of the empirical portfolio performance evaluation reported in Table 4 are perfectly

in line with the theoretical findings from previous sections. In this example the competing

strategies are the GMVP and the equally weighted portfolio. Based on them the out-of-sample

test-driven choice of the strategy is performed according to the three pretesting rules for the

significance level: (i) in-sample CE optimizing α∗t+1 as in (18), (ii) target shrinkage αst+1 as

in (19) and (iii) adaptive smoothing αmt+1 as in (20). As expected, for a given risk aversion γ

the performance of the equally weighted portfolio is not changing with estimation window and

portfolio sizes. Contrary to this, the GMVP performance in terms of the CE often worsens with

the size of the portfolio. This particularly happens when estimation risk is severe, i.e. when

the sample size is small relative to the number of parameters to be estimated. The flexible

choice of the significance level α∗t+1 allowing for a switch between the strategies results in the

higher out-of-sample CE for all three feasible methods. The only exception is the case with

N = 50/T = 60, γ = 1, γ = 3, where the equally weighted portfolio is dominating, where the

information contained in the noisy estimates of the the GMVP weights is simply not sufficient.

Table 5: Percentage of the risky strategy choice for different pretesting strategies

T=60 T=120
γ=0.1 γ=1 γ=3 γ=0.1 γ=1 γ=3

N=5
In-sample 49.7% 53.1% 60.0% 47.6% 52.4% 62.1%
Shrinkage 24.6% 27.7% 34.2% 21.7% 25.2% 34.0%
Smoothing 34.7% 37.2% 43.3% 34.6% 38.5% 46.7%

N=30
In-sample 52.9% 57.1% 67.2% 49.1% 54.8% 70.0%
Shrinkage 27.1% 29.1% 37.4% 27.9% 30.9% 41.9%
Smoothing 36.7% 39.7% 47.2% 38.4% 42.7% 54.8%

N=50
In-sample 49.9% 53.9% 62.4% 48.8% 55.1% 69.2%
Shrinkage 29.2% 30.1% 31.9% 32.4% 34.7% 42.3%
Smoothing 35.7% 37.3% 41.0% 39.8% 44.3% 54.9%

Figures in the table correspond to the average percent of choosing GMVP over equally weighted portfolio strategy
over 1000 randomly formed portfolios of the specified size. T denotes the estimation window length, γ denotes
risk aversion coefficient and N is the number of assets.

The superior performance of the pretesting strategies can be better understood by looking at

Table 5 which reports the share of cases, for which the GMVP is chosen over equally weighted

portfolio. Obviously, for a fixed estimation window length and portfolio size the increase in the

risk aversion parameter leads to the higher share of the GMVP choices. For a given γ the shares

26



do not seem to change much for both, different portfolio sizes and estimation window lengths.

5 Conclusions

This paper takes a closer look on the properties of the out-of-sample portfolio performance tests.

The pathology of these tests shows that the contribution of estimation noise to the test statistics

by far outweighs the contribution resulting from differences in the underlying theoretical portfolio

strategies. Therefore the test outcomes mainly reflect differences in estimation uncertainty for

the two portfolio strategies under consideration.

We provide evidence that the out-of-sample portfolio returns generated from estimated

portfolio weights in a rolling window design, follow a fat-tailed mixture distribution different

from the ones conventionally assumed in finance. By means of a Monte Carlo study based on

these mixture distributions we are able to show that the out-of-sample portfolio tests reveal

minor size distortions, but suffer from low power regardless of the type of test applied or its

specific implementation. This explains why in many out-of-sample horse races more sophisticated,

theoretically founded strategies are often incapable to outperform the simple, equally weighted

portfolio strategy at conventional significance levels.

Apart from this negative news, our study provides some guidelines for empirical studies using

out-of-sample performance tests. In order to improve the power of the test, it is advisable to use

a one-sided hypothesis instead of the two-sided one. Secondly, the equally weighted portfolio is

a particular tricky benchmark strategy as the estimated standard error of the CE difference is

particularly large. Basing the tests on other meaningful comparisons reduces the power problem

to some extent. Lastly, if possible, the size of the testing horizon matters more than the size of

the estimation window, i.e. the researcher should go for the largest testing horizon feasible.

We show that testing at a conventional significance level is not a reasonable strategy for two

reasons. Firstly, an ROC always shows that tests based on conventional significance levels are

hardly superior in choosing the better out-of-sample strategy compared to a random classification.

Secondly, we show that the tests are uninformative if the goal is to select a strategy which is

optimal in terms of financial performance. Based on a CE optimal choice of the significance

level a simple pretest-based strategy is shown to be superior over the standalone strategies. The

gain of the strategy results from its flexibility to switch between the GMVP and equal portfolio
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weights in different volatility regimes based on the outcome of the performance test. We show,

that despite their low power, the performance tests can be used for pretest estimation of the

portfolio weights which is able to outperform the underlying stand-alone strategies. Future

research should be concerned with the optimal data-driven choice of the tuning parameter of

the proposed strategy, e.g. based on a training sample along the lines of conventional machine

learning approaches.

Our study concentrates on testing procedures usually applied to monthly portfolio data. In

future work it needs to be shown whether our findings can be generalized to portfolio strategies

estimated returns at higher frequencies where autocorrelation plays a major role. Future work

also should investigate to what extent our findings can be generalized to other performance

measures than the certainty equivalent.
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A Appendix

A.1 Properties of the Return Process Within and Out-of-Sample

Table 6: Descriptive statistics

Average over all returns Average return (r̂p(e)) r̂p(e) r̂p(g(λ))

µ̂ 0.0071 0.0071 0.0068 0.0072

(p-val) (0.0012) (0.0000) (0.0001)

σ̂ 0.0609 0.0468 0.0350 0.0388

Ŝ -0.2988 -0.7737 -0.1434 -0.7835

(p-val) (0.0000) (0.2112) (0.0000)

K̂ 5.5028 6.4313 4.7653 6.0549

(p-val) (0.0000) (0.0000) (0.0000)

JB 190.4732 269.1896 60.7740 223.9715

(p-val) (0.0000) (0.0000) (0.0000)

Descriptive statistics of the returns in the data set and the corresponding out-of-sample portfolio returns for
different portfolio allocation strategies: equally weighted portfolio r̂p(e) (average return), GMVP r̂p(e), GMVP
combined with ridge estimator of covariance matrix r̂p(g(λ)). The Table reports the sample mean µ̂ and the
corresponding p-value when testing the mean against zero; σ̂ denotes standard deviation; skewness Ŝ is reported
alongside with the p-values of the test against zero; kurtosis K̂ is tested against 3, JB denotes the Jarque-Bera test
for normality with the corresponding p-value in parenthesis. The out-of-sample portfolio returns are constructed
using a rolling window with estimation window T = 300, where portfolio is rebalanced every month resulting in
the vector of length H = 456. The number of assets is set to N = 30, shrinkage intensity λ = 0.0078.

Table 7: Descriptive statistics of simulated returns

Data Mixture design Bivariate normal Bivariate t

GMVP out-of-sample portfolio return

µ̂ 0.0063 0.0052 0.0023 0.0077

σ̂ 0.0370 0.0329 0.0363 0.0366

Ŝ -0.1344 -0.1914 -0.0090 -1.1117

K̂ 4.7890 3.5525 2.8842 13.7351

1/N out-of-sample portfolio return

µ̂ 0.0069 0.0082 0.0020 0.0066

σ̂ 0.0480 0.0436 0.0490 0.0525

Ŝ -0.5287 -0.0664 -0.1167 -2.3253

K̂ 6.0952 2.9994 3.0419 28.6898

Descriptive statistics of the out-of-sample portfolio returns in the data set and the corresponding out-of-sample
portfolio returns simulated according to the proposed mixture design: sample mean µ̂, sample standard deviation
σ̂, sample skewness Ŝ and sample kurtosis K̂. The number of considered assets N = 30. The length of the
out-of-sample return vector is set to H = 500.
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Figure 5: Autocorrelation and Partial Autocorrelation of out-of-sample portfolio returns for
different strategies.
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Sample autocorrelation function (SACF), sample partial autocorrelation function (SPACF) for equally weighted
portfolio (1/N), Global Minimum Variance Portfolio (GMVP), the ridge covariance matrix estimator combined
with the GMVP (GMVP + Ridge).

Table 8: Theoretical out-of-sample CE difference under the null and alternative hypotheses

GMVP - 1/N

H0 H1

N/T = 0.01 N/T = 0.1 N/T = 0.01 N/T = 0.1

Monthly Annually Monthly Annually Monthly Annually Monthly Annually

γ = 0.5 -0.06% -0.67% -0.06% -0.70% 0.03% 0.33% 0.03% 0.30%

γ = 1.0 -0.03% -0.35% -0.03% -0.41% 0.05% 0.65% 0.05% 0.59%

γ = 3.0 0.08% 0.94% 0.06% 0.76% 0.16% 1.94% 0.15% 1.76%

GMVP(ridge) - 1/N

γ = 0.5 0.01% 0.18% 0.01% 0.15% 0.10% 1.18% 0.09% 1.15%

γ = 1.0 0.03% 0.36% 0.03% 0.30% 0.11% 1.36% 0.11% 1.30%

γ = 3.0 0.09% 1.11% 0.08% 0.93% 0.17% 2.11% 0.16% 1.93%

Figures in the table correspond to the theoretical out-of-sample CE difference, ∆op(s, s̃), for a given couple of
strategies (in percent, risk aversion parameter γ and estimation noise ratio N/T . The number of assets: N = 30.
Annualized differences are computed as ∆op(annual) = (1 + ∆op(monthly))12 − 1.
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Figure 6: Simulated distribution of the GMVP portfolio variance

Histograms normalized to probability of the GMVP portfolio variances over 10 000 Monte-Carlo draws for different
N/T ratios with N = 30. The out-of-sample portfolio returns are simulated according to the proposed mixture
design with length of the simulated returns H = 1000. The description of the histograms contains the sample
skewness over the 10 000 variances.

A.2 Size and Power Simulations

A.2.1 GMVP against equally weighted portfolio

Table 9: Power at 5% expected CE difference for GMVP vs 1/N. α = 5%. N/T = 0.01

Two-sided One-sided

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

γ = 0.5 0.1766 0.1684 0.1764 0.2636 0.2566 0.2644

H = 100 γ = 1.0 0.1774 0.1705 0.1779 0.2657 0.2602 0.2666

γ = 3.0 0.1810 0.1777 0.1826 0.2703 0.2684 0.2722

γ = 0.5 0.6157 0.6141 0.6162 0.7284 0.7272 0.7279

H = 500 γ = 1.0 0.6201 0.6194 0.6208 0.7323 0.7312 0.7326

γ = 3.0 0.6300 0.6316 0.6309 0.7409 0.7432 0.7425

γ = 0.5 0.8892 0.8881 0.8886 0.9376 0.9372 0.9376

H =1000 γ = 1.0 0.8915 0.8913 0.8915 0.9387 0.9387 0.9387

γ = 3.0 0.8995 0.9002 0.8994 0.9441 0.9444 0.9439

Figures in the table correspond to the share of Monte Carlo draws where the null hypothesis was rejected (out of
50 000 draws). H denotes the out-of-sample evaluation window length and γ denotes risk aversion coefficient.

32



Table 10: Empirical rejection probabilities under H0 for GMVP vs 1/N. α = 5%. N/T = 0.1

Two-sided One-sided

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

γ = 0.5 0.0596 0.0546 0.0591 0.0531 0.0510 0.0534

H = 100 γ = 1.0 0.0597 0.0550 0.0593 0.0527 0.0506 0.0529

γ = 3.0 0.0607 0.0562 0.0604 0.0494 0.0481 0.0498

γ = 0.5 0.0764 0.0757 0.0767 0.0641 0.0639 0.0644

H = 500 γ = 1.0 0.0786 0.0779 0.0786 0.0632 0.0629 0.0633

γ = 3.0 0.0803 0.0795 0.0806 0.0547 0.0551 0.0551

γ = 0.5 0.1030 0.1030 0.1035 0.0788 0.0788 0.0791

H =1000 γ = 1.0 0.0990 0.0992 0.0994 0.0726 0.0723 0.0725

γ = 3.0 0.1120 0.1120 0.1124 0.0642 0.0642 0.0641

Figures in the table correspond to the share of Monte Carlo draws where the null hypothesis was rejected (out of
50 000 draws). H denotes the out-of-sample evaluation window length and γ denotes risk aversion coefficient.

Table 11: Power at 5% expected CE difference for GMVP vs 1/N. α = 5%. N/T = 0.1

Two-sided One-sided

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

γ = 0.5 0.1720 0.1639 0.1724 0.2591 0.2527 0.2592

H = 100 γ = 1.0 0.1739 0.1678 0.1746 0.2608 0.2549 0.2616

γ = 3.0 0.1724 0.1695 0.1750 0.2585 0.2564 0.2602

γ = 0.5 0.5914 0.5899 0.5917 0.7056 0.7045 0.7058

H = 500 γ = 1.0 0.5958 0.5945 0.5957 0.7064 0.7063 0.7072

γ = 3.0 0.5854 0.5868 0.5860 0.6973 0.6985 0.6979

γ = 0.5 0.8661 0.8662 0.8663 0.9200 0.9198 0.9198

H =1000 γ = 1.0 0.8608 0.8610 0.8609 0.9191 0.9181 0.9184

γ = 3.0 0.8511 0.8521 0.8515 0.9083 0.9088 0.9086

Figures in the table correspond to the share of Monte Carlo draws where the null hypothesis was rejected (out of
50 000 draws). H denotes the out-of-sample evaluation window length and γ denotes risk aversion coefficient.
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A.2.2 Ridged GMVP against equally weighted portfolio

Table 12: Empirical rejection probabilities under H0 for GMVP with ridged covariance matrix
vs 1/N. α = 5%. N/T = 0.01

Two-sided One-sided

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

γ = 0.5 0.0559 0.0516 0.0557 0.0541 0.0523 0.0542

H = 100 γ = 1.0 0.0554 0.0517 0.0559 0.0539 0.0523 0.0544

γ = 3.0 0.0562 0.0517 0.0564 0.0533 0.0528 0.0543

γ = 0.5 0.0550 0.0541 0.0552 0.0529 0.0527 0.0531

H = 500 γ = 1.0 0.0541 0.0537 0.0544 0.0528 0.0528 0.0530

γ = 3.0 0.0543 0.0534 0.0544 0.0531 0.0537 0.0536

γ = 0.5 0.0563 0.0564 0.0569 0.0541 0.0540 0.0541

H =1000 γ = 1.0 0.0551 0.0548 0.0552 0.0543 0.0542 0.0542

γ = 3.0 0.0585 0.0577 0.0583 0.0574 0.0582 0.0580

Figures in the table correspond to the share of Monte Carlo draws where the null hypothesis was rejected (out of
50 000 draws). H denotes the out-of-sample evaluation window length and γ denotes risk aversion coefficient.

Table 13: Power at 1% expected CE difference for GMVP with ridged covariance matrix vs 1/N.
α = 5%. N/T = 0.01

Two-sided One-sided

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

γ = 0.5 0.0702 0.0667 0.0705 0.1065 0.1030 0.1074

H = 100 γ = 1.0 0.0706 0.0667 0.0711 0.1032 0.1008 0.1037

γ = 3.0 0.0849 0.0838 0.0860 0.1327 0.1331 0.1345

γ = 0.5 0.1401 0.1393 0.1401 0.2199 0.2192 0.2201

H = 500 γ = 1.0 0.1283 0.1283 0.1289 0.2036 0.2032 0.2037

γ = 3.0 0.2154 0.2188 0.2167 0.3189 0.3210 0.3191

γ = 0.5 0.2349 0.2348 0.2354 0.3396 0.3390 0.3394

H =1000 γ = 1.0 0.2064 0.2061 0.2062 0.3052 0.3057 0.3057

γ = 3.0 0.3853 0.3884 0.3858 0.5051 0.5087 0.5066

Figures in the table correspond to the share of Monte Carlo draws where the null hypothesis was rejected (out of
50 000 draws). H denotes the out-of-sample evaluation window length and γ denotes risk aversion coefficient.
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Table 14: Empirical rejection probabilities under H0 for GMVP with ridged covariance matrix
vs 1/N. α = 5%. N/T = 0.1

Two-sided One-sided

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

γ = 0.5 0.0607 0.0567 0.0607 0.0574 0.0552 0.0578

H = 100 γ = 1.0 0.0609 0.0567 0.0612 0.0587 0.0568 0.0590

γ = 3.0 0.0619 0.0579 0.0621 0.0632 0.0627 0.0637

γ = 0.5 0.0790 0.0785 0.0794 0.0718 0.0716 0.0720

H = 500 γ = 1.0 0.0784 0.0777 0.0787 0.0751 0.0750 0.0754

γ = 3.0 0.0865 0.0858 0.0867 0.0875 0.0886 0.0881

γ = 0.5 0.1080 0.1076 0.1084 0.0900 0.0898 0.0899

H =1000 γ = 1.0 0.1092 0.1088 0.1094 0.0959 0.0960 0.0961

γ = 3.0 0.1213 0.1218 0.1220 0.1184 0.1197 0.1192

Figures in the table correspond to the share of Monte Carlo draws where the null hypothesis was rejected (out of
50 000 draws). H denotes the out-of-sample evaluation window length and γ denotes risk aversion coefficient.

Table 15: Power at 1% expected CE difference for GMVP with ridged covariance matrix vs 1/N.
α = 5%. N/T = 0.1

Two-sided One-sided

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

Delta
method

Bootstrap
Percentile

Bootstrap
t-statistic

γ = 0.5 0.0716 0.0679 0.0721 0.1088 0.1052 0.1092

H = 100 γ = 1.0 0.0818 0.0774 0.0827 0.1250 0.1224 0.1263

γ = 3.0 0.0878 0.0857 0.0890 0.1340 0.1339 0.1361

γ = 0.5 0.1494 0.1487 0.1494 0.2265 0.2259 0.2271

H = 500 γ = 1.0 0.1926 0.1926 0.1931 0.2802 0.2808 0.2812

γ = 3.0 0.2257 0.2280 0.2263 0.3190 0.3218 0.3206

γ = 0.5 0.2451 0.2448 0.2457 0.3453 0.3456 0.3457

H =1000 γ = 1.0 0.3195 0.3192 0.3196 0.4234 0.4243 0.4240

γ = 3.0 0.3857 0.3887 0.3868 0.4868 0.4888 0.4875

Figures in the table correspond to the share of Monte Carlo draws where the null hypothesis was rejected (out of
50 000 draws). H denotes the out-of-sample evaluation window length and γ denotes risk aversion coefficient.
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