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Abstract

We propose a novel estimation approach for the covariance matrix based on the l1-regularized

approximate factor model. Our sparse approximate factor (SAF) covariance estimator allows for

the existence of weak factors and hence relaxes the pervasiveness assumption generally adopted for

the standard approximate factor model. We prove consistency of the covariance matrix estimator

under the Frobenius norm as well as the consistency of the factor loadings and the factors.

Our Monte Carlo simulations reveal that the SAF covariance estimator has superior proper-

ties in finite samples for low and high dimensions and different designs of the covariance matrix.

Moreover, in an out-of-sample portfolio forecasting application the estimator uniformly outperforms

alternative portfolio strategies based on alternative covariance estimation approaches and modeling

strategies including the 1/N-strategy.
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a Department of Economics, Universitätsstraße 1, D-78457 Konstanz, Germany. Phone: +49-7531-88-2657,
email: Maurizio.Daniele@uni-konstanz.de.
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1 Introduction

The estimation of high-dimensional covariance matrices and their inverses (precision matrices)

has recently received a great attention. In economics and finance, it is central for portfolio

allocation, risk measurement, asset pricing and graphical network analysis. The list of important

applications from other areas of research includes, for example, the analysis of climate data, gene

classification and image classification. What appears to be a trivial estimation problem for a

large sample size T and a low dimensional vector of covariates, turns out to be demanding,

if N is of the same order of magnitude or even larger than T . In these cases, the sample

covariance matrix becomes nearly singular and estimates the population covariance matrix

poorly. Moreover, assumptions of standard asymptotic theory with T → ∞, holding N fixed,

turns out to be inappropriate and have to be replaced by assumptions allowing for both, T and

N , approaching infinity.

In recent years numerous studies proposed alternative estimation approaches for high-dimensional

covariance matrices, which differ in the way of bounding the dimensionality problem. Two major

approaches are factor models imposing a lower dimensional factor structure for the underlying

multivariate process and regularization strategies for the parameters of the covariance matrix

or its eigenvalues (see Fan, Liao, and Liu (2016) for a recent survey on the estimation of large

covariances and precision matrices). In this paper, we present an effective novel approach to

the estimation of high-dimensional covariances, which profits from both branches of the liter-

ature. Our sparse approximate factor (SAF) approach to the estimation of high-dimensional

covariance matrices is based on l1-regularization of the factor loadings and thereby is able to

account for weak factors and shrinks elements in the covariance matrix towards zero.

Approaches to obtain consistent estimators by imposing a sparse structure on the covariance

matrix directly include Bickel and Levina (2008a, 2008b), Cai and Liu (2011) and Cai and Zhou

(2012). These thresholding approaches are shrinking small elements in the covariance matrix

exactly to zero. While this may be a reasonable strategy, e.g. for genetic data, this assumption

may not be appropriate for economic or financial data, where variables are driven by common

underlying factors. Such a feature may be more appropriately captured by covariance matrices

based on factor representations.
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In the literature on factor based covariance estimation Fan, Fan, and Lv (2008) consider the

case of a strict factor representation with observed factors. This approach requires knowledge

of additional observable variables (e.g. the Fama-French factors in the asset pricing frame-

work), which may be an additional source of misspecification. Moreover, strict factor model

representations impose the overly strong assumption of strictly uncorrelated idiosyncratic errors.

This assumption was relaxed in Fan, Liao, and Mincheva (2011) and Fan, Liao, and Mincheva

(2013), who propose a covariance estimator based on an approximate factor model representa-

tion. While Fan, Liao, and Mincheva (2011) shrink the entries of the covariance matrix of the

idiosyncratic errors to zero using the adaptive thresholding technique by Cai and Liu (2011),

the approach proposed in Fan, Liao, and Mincheva (2013) rests on the more general principal

orthogonal complement thresholding method (POET) to allow for sparsity in the covariance

matrix of the idiosyncratic errors.

Our SAF covariance matrix estimator extends the existing framework on factor based ap-

proaches by imposing sparsity on both, the factor loadings and the covariance matrix of the

idiosyncratic errors. Unlike imposing sparsity for the covariance matrix directly by thresholding

or l1-norm regularization, the l1-regularization of the factor loadings does not necessarily imply

zero entities of the covariance matrix, but simply reduces the dimensionality problem in the

estimation of the factor driven part of the covariance matrix. Moreover, the sparsity in the

matrix of factor loadings allows for weak factors, which only affect a subset of the observed vari-

ables. Thus the SAF-approach relaxes the identifying assumption on the pervasiveness of the

factors in the standard framework. This further implies that the eigenvalues of the covariance

matrix corresponding to the common component are allowed to diverge at a slower rate than

commonly considered (i.e. slower than O(N)).

The weaker conditions on the eigenvalues allow us to derive the consistency for the SAF

covariance matrix estimator under the average Frobenius norm under rather mild regularity

conditions. To our knowledge this convergence result is new. Because of the fast diverging

eigenvalues for estimators based on the approximate factor model, convergence has only be

shown under the weaker weighted quadratic norm but not for the more general Frobenius norm

(see, e.g. Fan, Liao, and Mincheva (2013)). As a byproduct of our proof for the SAF covariance

matrix estimator, we also prove the consistency for the estimators of the sparse factor loadings,
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the factors and the covariance matrix of the idiosyncratic errors.

The favorable asymptotic properties of the SAF covariance matrix estimator are well sup-

ported by our Monte Carlo study based on different dimensions and alternative designs of the

population covariance matrix. More precisely, the SAF covariance matrix estimator yields the

lowest difference in the Frobenius norm to the true underlying covariance matrix compared to

several competing estimation strategies.

Finally, in an empirical study on the portfolio allocation problem, we show that the SAF

covariance matrix estimator is a superior choice to construct the weights of the Global Minimum

Variance Portfolio (GMVP) for low and large dimensional portfolios. Based on returns data

from the S&P 500 the estimator uniformly outperforms portfolio strategies based on alternative

covariance estimation approaches and modeling strategies including the 1/N -strategy in terms

of different popular out-of-sample portfolio performance measures.

The rest of the paper is organized as follows. In Section 2 we introduce the approximate

factor model approach and show how sparsity can be obtained with respect to the factor load-

ings matrix by l1-regularization. Section 3 discusses the theoretical setup and provides the

convergence results. Implementation issues are discussed in Section 4. In Section 5, we present

Monte-Carlo evidence on the finite sample properties of our new covariance estimator, while

in Section 6 we show the performance of our approach when applied to the empirical portfolio

allocation problem. Section 7 summarizes the main findings and gives an outlook on future

research.

Throughout the paper we will use the following notation: πmax(A) and πmin(A) are the

maximum and minimum eigenvalue of a matrix A. Further, ‖A‖, ‖A‖F and ‖A‖1 denote the

spectral, Frobenius and the l1-norm of A, respectively. They are defined as ‖A‖ =
√

πmax(A′A),

‖A‖F =
√

tr (A′A) and ‖A‖1 = maxj
∑

i |aij |.

2 Factor Model Based Covariance Estimation

2.1 The Approximate Factor Model

The following analysis is based on the approximate factor model (AFM) proposed by Cham-

berlain and Rothschild (1983) to obtain a lower dimensional representation of a possibly high-
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dimensional covariance matrix. Let xit be the i-th observable variable at time t for i = 1, . . . , N

and t = 1, . . . , T , such that N and T denote the sample size in the cross-section and in the time

dimension, respectively. The approximate factor model is given by:

xit = λ′
ift + uit , (1)

where λi is a (r × 1)-dimensional vector of factor loadings for variable i and ft is a (r × 1)-

dimensional vector of latent factors at time t, where r denotes the number of factors common

to all variables in the model. Typically, we assume that r is much smaller than the number

of variables N . Finally, the idiosyncratic component uit accounts for variable-specific shocks,

which are not captured by the common component λ′
ift. The AFM allows for weak serial and

cross-sectional correlations among the idiosyncratic components with a dense covariance matrix

of the idiosyncratic error term vector, Σu = Cov
[
(u1t, u2t, . . . uNt)

′]. In matrix notation, (1)

can be written as:

X = ΛF ′ + u , (2)

where X denotes a (N × T ) matrix containing T observations for N weakly stationary time

series. It is assumed that the time series are demeaned and standardized. F = (f1, . . . , fT )
′ is

referred to as a (T × r)-dimensional matrix of unobserved factors, Λ = (λ1, . . . , λN )′ is a N × r

matrix of corresponding factor loadings and u is a (N × T )-dimensional matrix of idiosyncratic

shocks.

There are several estimation approaches for a factor model as given by (2). The principal

component analysis (PCA)1 and the quasi-maximum likelihood estimation (QMLE) under nor-

mality (see i.e. Bai and Li (2016)) are the two most popular ones. In the following, we pursue

estimating the factor model by QMLE. This allows us to introduce sparsity in the factor load-

ings by penalizing the likelihood function. Moreover, contrary to PCA, all model parameters

including the covariance matrix Σu can be estimated jointly, while PCA-based second stage

estimates of Σu require consistent estimation of Λ and F in the first stage. This, however,

may be problematic for the case of a relatively small N , because F can no longer be estimated

1 See i.e. Bai and Ng (2002) or Stock and Watson (2002b) for a detailed treatment of the PCA in approximate
factor models.
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consistently (Bai and Liao (2016)).

The negative quasi log-likelihood function for the data in the AFM is defined as:

L(Λ,ΣF ,Σu) = log
∣∣∣det

(
ΛΣFΛ

′ +Σu

)∣∣∣+ tr
[
Sx

(
ΛΣFΛ

′ +Σu

)−1
]
, (3)

where Sx = 1
T

∑T
t=1 xtx

′
t denotes the sample covariance matrix based on the observed data. ΣF

is the low dimensional covariance matrix of the factors. Within the framework of an AFM, the

estimation of a full Σu is cumbersome, as the number of parameters to estimate is N(N+1)
2 which

may exceed the sample size T . In order to overcome this problem, we treat Σu as a diagonal

matrix in the first step and define Φu = diag (Σu) denoting a diagonal matrix that contains only

the elements of the main diagonal of Σu. Following Lawley and Maxwell (1971), we impose the

following identification restrictions: ΣF = Ir and Λ′Φ−1
u Λ is diagonal. Moreover, the diagonal

entries of Λ′Φ−1
u Λ are assumed to be distinct and arranged in a decreasing order.

Imposing these identifying restrictions has the advantage that the estimation of the covari-

ance matrix of the factors becomes redundant. Hence, our objective function reduces to:

L(Λ,Φu) = log
∣∣∣det

(
ΛΛ′ +Φu

)∣∣∣+ tr
[
Sx

(
ΛΛ′ +Φu

)−1
]
. (4)

As the true covariance matrix of ut allows for correlations of general form, but the previous

objective function incorporates the error term structure of a strict factor model, (4) may be

seen as a quasi-likelihood. Bai and Li (2016) show that the QML estimator based on (4) yields

consistent parameter estimates. Hence, the consistency of Φu is not affected by the general form

of cross-section and serial correlations in ut.

The factors ft can be estimated by generalized least squares (GLS):

f̂t =
(
Λ̂′Φ̂−1

u Λ̂
)−1

Λ̂′Φ̂−1
u xt , (5)

where the estimates Λ̂ and Φ̂u are the ones obtained from the optimization of the objective

function in (4).
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2.2 The Sparse Approximate Factor Model

The sparse approximate factor (SAF) model allows for sparsity in the factor loadings matrix Λ

by shrinking single elements of Λ to zero. This is obtained by the l1-norm penalized MLE of

(4) based on the following optimization problem:

min
Λ,Φu


log

∣∣∣det
(
ΛΛ′ +Φu

)∣∣∣+ tr
[
Sx

(
ΛΛ′ +Φu

)−1
]
+ µ

r∑

k=1

N∑

i=1

|λik|


 , (6)

where µ ≥ 0 denotes a regularization parameter. Note that the number of factors r is predeter-

mined and assumed to be fixed. Sparsity is obtained by shrinking some elements of Λ to zero,

such that not all r factors load on each xit. Hence, this framework allows for weak factors (see,

e.g. Onatski (2012)) that affect only a subset of the N time series.

In contrast to the weak factor assumption introduced in the following, the pervasiveness

assumption conventionally made for standard approximate factor models (e.g. Bai and Ng

(2002), Stock and Watson (2002a)), implies that the r largest eigenvalues of Λ′Λ diverge at the

rate O(N). Intuitively, this means that all factors are strong and the entire set of time series

is affected. Consequently, the sparsity in the factor loadings matrix introduced in Assumption

2.1 below considerably relaxes the conventional pervasiveness assumption.

Assumption 2.1 (Weakness of the Factors).

There exists a constant c > 0 such that, for all N ,

c−1 < πmin

(
Λ′Λ

Nβ

)
≤ πmax

(
Λ′Λ

Nβ

)
< c,

where 1/2 ≤ β ≤ 1.2

Assumption 2.1 implies that the r largest eigenvalues of Λ′Λ diverge with the rate O
(
Nβ
)
,

which can be much slower than in the standard AFM. On the other hand, the special case of

β = 1, implies the standard AFM framework with strong factors (i.e. Fan, Liao, and Mincheva

(2013), Bai and Liao (2016)). Hence, our sparse approximate factor model offers a convenient

generalization of the standard one. Furthermore, Assumption 2.1 has a direct implication on the

sparsity of Λ. In fact, this can be deduced by upper bounding the spectral norm of Λ according

2 The lower limit 1/2 for β is necessary to consistently estimate the factors. See Lemma A.7 in Appendix A.1.
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to the following expressions:





‖Λ‖1 ≤
√
N ‖Λ‖ = O

(
N (1+β)/2

)

‖Λ‖1 ≥ ‖Λ‖ = O
(
Nβ/2

) (7)

This result shows that imposing the weak factor assumption limits the amount of affected time

series across all factors and hence requires a non-negligible amount of zero elements in each

column of the factor loadings matrix. Nevertheless, the number of zero factor loadings can be

arbitrarily small as β increases. Note, that the lower bound of equation (7) restricts the number

of zero elements in each column of Λ, so that we can disentangle the common component from

the idiosyncratic one.

The pervasiveness assumption imposed by the standard AFM, further implies a clear sepa-

ration of the eigenvalues of the data covariance matrix into two groups, corresponding to the

diverging eigenvalues of the common component and the bounded eigenvalues of the covariance

matrix of the idiosyncratic errors.

These characteristics can be observed in Figure 1, where both panels illustrate the eigenvalue

structure of datasets, that are simulated only based on strong factors for T = 450 and different

N . The panels differ solely in the number of factors included, where the left panel includes one

strong factor and the right panel depicts the case of four strong factors. Both graphs reveal a

clear partition in their respective eigenvalue structures, into sets of eigenvalues that diverge with

the sample size N corresponding to the number of included strong factors and sets of bounded

eigenvalues associated to the idiosyncratic components.
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(a) Eigenvalues for simulated data with 1 strong

factor with T = 450
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(b) Eigenvalues for simulated data with 4 strong

factors with T = 450

Figure 1: Structure of the eigenvalues based on strong factors

However, such a clear separation in the eigenvalue structure of the covariance matrix cannot

typically be found in real datasets. An example offers a dataset that contains the monthly

asset returns of stocks constituents of the S&P 500 stock index available for the entire period of

450 months,3 whose eigenvalue distribution is illustrated in Figure 2. The graph shows a clear

distinction between the first eigenvalue and the remaining eigenvalues. However, the remaining

eigenvalues diverge at a slower rate and a clear separation between the common and idiosyncratic

component as implied by the standard AFM is impossible. Hence, the weak factor framework

that allows for a slower divergence rate in the eigenvalues of the common component is more

realistic for modeling the eigenvalue structure of real datasets. Figure 3 depicts the eigenvalue

structure of a dataset, which is generated by one strong factor and three weak factors. This

model with weak factors nicely mimics the decaying eigenvalue structure we observe for the

S&P 500 asset returns.

3 The same dataset is also used in our empirical application and is described in more detail in Section 6.
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Figure 2: Eigenvalues for stock returns of
stocks constituents of the S&P 500 index
with T = 450
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Figure 3: Eigenvalues for simulated data
with 1 strong factor and 3 weak factors with
T = 450

2.3 Estimation of the idiosyncratic error covariance matrix Σu

In order to relax the imposed diagonality assumption on Σu in the first step of our estimation,

we re-estimate the covariance matrix of the idiosyncratic error term by means of the principal

orthogonal complement thresholding (POET) estimator by Fan, Liao, and Mincheva (2013).

The POET estimator is based on soft-thresholding the off-diagonal elements of the sample

covariance matrix of the residuals obtained from the estimation of an approximate factor model.

Hence, it introduces sparsity in the idiosyncratic covariance matrix and offers a solution to the

non-invertibility problem, generated using the sample covariance estimator, especially in high

dimensional settings, where N is close or even larger than T . More specifically, the estimated

idiosyncratic error covariance matrix Σ̂τ
u based on the POET method is defined as:

Σ̂τ
u = σ̂τ

ij, σ̂τ
ij =





σ̂u,ii, i = j

S(σ̂u,ij, τ), i 6= j

where σ̂u,ij is the ij-th element of the sample covariance matrix Su = 1
T

∑T
t=1(xt−Λ̂f̂t)(xt−Λ̂f̂t)

′

of the estimated factor model residuals, τ = 1√
N
+

√
log(N)

T is a threshold4 and S(·) denotes the
4 The threshold τ is based on the convergence rate of the idiosyncratic error covariance estimator specified in

Lemma A.10. in Appendix A.2 .
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soft-thresholding operator defined as:

S(σu,ij, τ) = sign(σu,ij)(|σu,ij| − τ)+ . (8)

In contrast to Fan, Liao, and Mincheva (2013), who use the residuals of a static factor model

based on the PCA estimator, our estimates are based on the residuals obtained from our sparse

factor model.

2.4 SAF covariance matrix estimation

The estimator of the data covariance matrix based on the approximate factor model is obtained

according to Σ = Cov [X] = ΛΣFΛ
′+Σu. Hereby, we first estimate the factors ft and the factor

loadings Λ according to our sparse factor model introduced in Section 2.2. Consistent estimates

of Λ and ft are obtained by MLE and GLS as given by (4) and (5), respectively. This yields the

estimates of the common and idiosyncratic components of the AFM defined in (1). The latter

one is used as input to estimate Σu by the POET estimator introduced in Section 2.3. Hence,

our SAF covariance matrix estimator is given by:

Σ̂SAF = Λ̂SF̂ Λ̂
′ + Σ̂τ

u, (9)

where SF̂ denotes the sample estimator for the covariance matrix of the estimated factors,

which is positive definite because the number of observations exceeds the number of factors.

Further, using the convergence rate of the idiosyncratic error covariance matrix for the threshold

τ also guarantees that Σ̂τ
u is positive definite with probability tending to one according to

Bickel and Levina (2008a). Hence, the covariance matrix estimator Σ̂SAF is positive definite by

construction.

3 Large Sample Properties

3.1 Consistency of the Sparse Approximate Factor Model Estimator

In order to establish the consistency of the factor loadings matrix Λ and the data covariance

matrix Σ estimators, we adapt the following standard assumptions:
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Assumption 3.1 (Data generating process).

(i) {ut, ft}t≥1 is strictly stationary. In addition, E [uit] = E [uitfkt] = 0, for all i ≤ N , k ≤ r

and t ≤ T .

(ii) There exist r1, r2 > 0 and b1, b2 > 0, such that for any s > 0, i ≤ N and k ≤ r,

P
(
|uit| > s

)
≤ exp(−(s/b1)

r1), P
(
|fkt| > s

)
≤ exp(−(s/b2)

r2).

(iii) Define the mixing coefficient:

α(T ) := sup
A∈F0

−∞
,B∈F∞

T

∣∣P (A)P (B)−P (AB)
∣∣ ,

where F0
−∞ and F∞

T denote the σ-algebras generated by {(ft, ut) : −∞ ≤ t ≤ 0} and

{(ft, ut) : T ≤ t ≤ ∞}.

Strong mixing: There exist r3 > 0 and C > 0 satisfying: for all T ∈ Z+,

α(T ) ≤ exp(−CT r3).

(iv) There exist constants c1, c2 > 0 such that c2 ≤ πmin (Σu0) ≤ πmax (Σu0) ≤ c1.

The assumptions in 3.1 impose regularity conditions on the data generating process and

are identical to those imposed by Bai and Liao (2016). Condition (i) imposes strict station-

arity for ut and ft and requires that both terms are not correlated. Condition (ii) requires

exponential-type tails, which allows to use the large deviation theory for 1
T

∑T
t=1 uitujt − σu,ij

and 1
T

∑T
t=1 fjtuit.

In order to allow for weak serial dependence, we impose a strong mixing condition specified in

Condition (iii). Further, Condition (iv) implies bounded eigenvalues of the idiosyncratic error

covariance matrix, which is a common identifying assumption in the factor model framework.

Assumption 3.2 (Sparsity).

(i) LN =
∑r

k=1

∑N
i=1 1l {λik 6= 0} = O (N)

(ii) SN = maxi≤N
∑N

j=1 1l
{
σu,ij 6= 0

}
,
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where 1l {·} defines an indicator function that is equal to one if the boolean argument in braces

is true.

Assumptions 3.2 imposes sparsity conditions on Λ and Σu, where condition (i) defines the

quantity LN that reflects the number of non-zero elements in the factor loadings matrix Λ. As

the number of factors r are assumed to be fixed, (i) restricts the number of non-zero elements

in each column of Λ to be upper bounded by N . At the same time, this assumption allows

for a sparse factor loadings matrix with less than N non-zero elements. Condition (ii) specifies

SN that quantifies the maximum number of non-zero elements in each row of Σu, following the

definition of Bickel and Levina (2008a).

Theorem 3.1 (Consistency of the Sparse Approximate Factor Model Estimator).

Under Assumptions 2.1, 3.1 and 3.2 the sparse factor model in (6) satisfies the following prop-

erties, as T and N → ∞:

1

N

∥∥∥Λ̂− Λ0

∥∥∥
2

F
= Op

(
µ2 +

logNβ

N
+

1

Nβ

logN

T

)

and

1

N

∥∥∥Φ̂u −Φu0

∥∥∥
2

F
= Op

(
logNβ

N
+

logN

T

)
,

for 1/2 ≤ β ≤ 1.

Hence, for log(N) = o(T ) and the regularization parameter µ = o(1), we have:

1

N

∥∥∥Λ̂− Λ0

∥∥∥
2

F
= op(1),

1

N

∥∥∥Φ̂u − Φu0

∥∥∥
2

F
= op(1).

Furthermore, for all t ≤ T :

∥∥∥f̂t − ft

∥∥∥ = op(1)

For the covariance matrix estimator of the idiosyncratic errors in the second step, specified in

Section 2.3, we get:

∥∥∥Σ̂τ
u − Σu

∥∥∥ = Op

(
SN

√
µ2 +

N

LN
dT

)
,
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where dT = logNβ

N + 1
Nβ

logN
T .

Hence, for S2
NdT = o(1) and SNµ = o(1), this yields:

∥∥∥Σ̂τ
u − Σu

∥∥∥ = op(1).

The proof of Theorem 3.1 is given in Appendix A.1 and A.2. Under the given regularity

conditions this theorem establishes the average consistency in the Frobenius norm of the esti-

mators for the factor loadings matrix and idiosyncratic error covariance matrix based on our

sparse factor model. More specifically, Λ and Φ can be estimated consistently, regardless of

the diagonality restriction on Σu in the first step of our estimation procedure. Consequently,

the factors ft estimated based on GLS are as well consistent. The lower limit 1/2 on β is a

necessary condition to achieve consistency. Intuitively this means that the factors should not

be too weak such that there is still a clear distinction between the common and idiosyncratic

component. Furthermore, the second step estimator of Σu can be consistently estimated under

the spectral norm.

3.2 Consistency of the Covariance Matrix Estimator

Finally, in this section we take a closer look on the asymptotic properties of the SAF covariance

matrix estimator, given in Section 2.4. The following theorem gives the convergence rates of

the covariance matrix estimator and of its inverse under different matrix norms.

Theorem 3.2 (Convergence Rates for the Covariance Matrix Estimator).

Under Assumptions 2.1, 3.1 and 3.2, the covariance matrix estimator based on the sparse factor

model in equation (9) satisfies the following properties, as T , N → ∞ and 1/2 ≤ β ≤ 1:

1

N

∥∥∥Σ̂SAF − Σ
∥∥∥
2

Σ
= Op



[
µ2 + dT

]2
+

[
Nβ

N
+

S2
N

N

] [
µ2 + dT

]

 , (10)

1

N

∥∥∥Σ̂SAF − Σ
∥∥∥
2

F
= Op

(
N
[
µ2 + dT

]2
+
[
Nβ + S2

N

] [
µ2 + dT

])
(11)

and

1

N

∥∥∥Σ̂−1
SAF − Σ−1

∥∥∥
2

F
= Op

([
1

Nβ
+ S2

N

] [
µ2 + dT

])
, (12)
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where dT = logNβ

N + 1
Nβ

logN
T and ‖A‖Σ = 1√

N

∥∥∥Σ−1/2AΣ−1/2
∥∥∥
F

denotes the weighted

quadratic norm introduced by Fan, Fan, and Lv (2008).

The proof of Theorem 3.2 is given in Appendix A.3. Similar as for Theorem 3.1, we assume

that the regularization parameter µ = o(1) and log(N) = o(T ). Equation (10) in Theorem 3.2

shows that the covariance matrix estimator based on the sparse factor model in equation (9) is

consistent if we consider the weighted quadratic norm for the entire set of possible values for β.

Generally, convergence under the average Frobenius norm is hard to achieve because of the

too fast diverging eigenvalues of the common component (see Fan, Liao, and Mincheva (2013)).

However, according to equation (11) our SAF covariance matrix estimator is consistent, if

µ = o
(
Nβ/2

)
and 1/2 ≤ β / 9/10. Hence, the relaxation of the pervasiveness assumption in

the standard approximate factor model to allow for weak factors leads to convergence of the

covariance estimator under the average Frobenius norm. The upper bound for β follows from

the expression Nβ logNβ

N in Equation (11) of Theorem 3.2.5 Further, Equation (12) of Theorem

3.2 shows that the inverse of ΣSAF is consistently estimated under the average Frobenius norm.

4 Implementation Issues

For the implementation of the SAF model, we use a two-step estimation procedure that treats

Σu in the first step as a diagonal matrix, denoted as Φu and re-estimates the idiosyncratic error

covariance matrix in a second step by the method introduced in Section 2.3. Theorem 3.1 shows

that this two-step procedure yields consistent estimates for Λ and Σu.

4.1 Majorized Log-Likelihood Function

The numerical minimization of the objective function (6) is cumbersome as it is not globally

convex. This problem arises because the first term in (6) log
∣∣∣det

(
ΛΛ′ +Φu

)∣∣∣ is concave in Λ

and Φu, whereas the second term tr
[
Sx

(
ΛΛ′ +Φu

)−1
]
is convex. For our implementation we

employ the majorize-minimize EM algorithm introduced by Bien and Tibshirani (2011). The

idea of this optimization approach is to approximate the numerically unstable concave part

5 A closed form solution for the upper bound of β is not feasible, hence we numerically approximate the maximum

value of β in the neighbourhood of one such that the expression Nβ logNβ

N
is converging to zero.

14



log
∣∣∣det

(
ΛΛ′ +Φu

)∣∣∣ by its tangent plane, which corresponds to the following expression:

log

∣∣∣∣det
(
Λ̂mΛ̂′

m + Φ̂u,m

)∣∣∣∣+ tr

[
2Λ̂′

m

(
Λ̂mΛ̂′

m + Φ̂u,m

)−1 (
Λ− Λ̂m

)]
, (13)

where the subscript m denotes the m-th step in an iterative procedure outlined in Section

4.2. Replacing the concave part in (4) by the convex expression in (13), yields the following

majorized log-likelihood function:

L̄m(Λ) = log

∣∣∣∣det
(
Λ̂mΛ̂′

m + Φ̂u,m

)∣∣∣∣+ tr

[
2Λ̂′

m

(
Λ̂mΛ̂′

m + Φ̂u,m

)−1 (
Λ− Λ̂m

)]

+ tr

[
Sx

(
ΛΛ′ + Φ̂u

)−1
] (14)

Augmenting the majorized log-likelihood by the l1-penalty term, leads to the following opti-

mization problem for our SAF model:

min
Λ,Φu

{
log

∣∣∣∣det
(
Λ̂mΛ̂′

m + Φ̂u,m

)∣∣∣∣+ tr

[
2Λ̂′

m

(
Λ̂mΛ̂′

m + Φ̂u,m

)−1 (
Λ− Λ̂m

)]

+tr

[
Sx

(
ΛΛ′ + Φ̂u

)−1
]
+ µ

r∑

k=1

N∑

i=1

|λik|





(15)

As all three components in (15) are convex, the optimization problem simplifies considerably

compared to the original problem in equation (6).

4.2 Projection Gradient Algorithm

In order to minimize (15) efficiently, we apply the fast projected gradient algorithm proposed

by Bien and Tibshirani (2011). More specifically, we approximate the majorized log-likelihood

L̄m(Λ) in (14) by the following expression:

L̃(Λ) = 1

2t

∥∥∥Λ− Λ̂m + tÂ
∥∥∥
2

F
,

where t is the depth of projection6 and

Â = 2

[(
Λ̂mΛ̂′

m + Φ̂u,m

)−1
−
(
Λ̂mΛ̂′

m + Φ̂u,m

)−1
Sx

(
Λ̂mΛ̂′

m + Φ̂u,m

)−1
]
Λ̂m, (16)

6 We set t = 0.01 for all our applications below.
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which corresponds to the first derivative of L̄(Λ) with respect to Λ. Hence, our final optimization

problem corresponds to:

min
λik

1

2t

r∑

k=1

N∑

i=1

(
λik − λ̂ik,m + tÂik,m

)2
+ µ

r∑

k=1

N∑

i=1

|λik| . (17)

The minimization of the objective function (17) can be carried out by computing its gradient

with respect to λik and setting it to zero, which yields:

∂

∂λik


 1

2t

r∑

k=1

N∑

i=1

(
λik − λ̂ik,m + tÂik,m

)2
+ µ

r∑

k=1

N∑

i=1

|λik|




=
1

t

r∑

k=1

N∑

i=1

(
λ̂ik − λ̂ik,m + tÂik,m

)
+ µ

r∑

k=1

N∑

i=1

νik = 0 ,

(18)

where νik denotes the subgradient of |λik|. Solving (18) for a specific λ̂ik, gives:

λ̂ik + t · µνik = λ̂ik,m − tÂik,m

λ̂ik = S
(
λ̂ik,m − tÂik,m, t · µ

)
, (19)

where S denotes the soft-thresholding operator defined in equation (8). Equation (19) can be

used to update the estimated factor loadings λ̂ik,m+1 given the estimate from the previous step

λ̂ik,m.

In order to obtain an update for the estimate of the covariance matrix of the idiosyncratic

errors Φu, we use the EM algorithm suggested by Bai and Li (2012):

Φ̂u,m+1 = diag

[
Sx − Λ̂m+1Λ̂

′
m

(
Λ̂mΛ̂′

m + Φ̂u,m

)−1
Sx

]

Our iterative estimation procedure for the SAF model can be briefly summarized as given below.

Iterative Algorithm

Step 1: Obtain an initial consistent estimate for the factor loadings matrix Λ and for the

diagonal idiosyncratic error covariance matrix Φu , i.e. by using unpenalized MLE

and set m = 1.
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Step 2: Update λ̂ik,m−1, by λ̂ik,m = S
(
λ̂ik,m−1 − tÂik,m−1, t · µ

)
.

Step 3: Update Φ̂u using the EM algorithm in Bai and Li (2012), according to

Φ̂u,m = diag

[
Sx − Λ̂mΛ̂′

m−1

(
Λ̂m−1Λ̂

′
m−1 + Φ̂u,m−1

)−1
Sx

]
.

Step 4: If
∥∥∥Λ̂m − Λ̂m−1

∥∥∥ and
∥∥∥Φ̂u,m − Φ̂u,m−1

∥∥∥ are sufficiently small, stop the procedure,

otherwise set m = m+ 1 and return to Step 2.

Step 5: Estimate the factors by f̂t =
(
Λ̂′Φ̂−1

u Λ̂
)−1

Λ̂′Φ̂−1
u xt , where Λ̂ and Φ̂u are the pa-

rameter estimates after convergence.

Step 6: Re-estimate the covariance matrix of the idiosyncratic errors based on the procedure

introduced in Section 2.3.

For the high dimensional case of N > T , the sample covariance matrix Sx is not of full rank

and hence leads to inconsistent parameter estimates. To overcome this problem, we adopt the

solution proposed by Bien and Tibshirani (2011), who suggest augmenting the diagonal elements

of Sx by an arbitrarily small ε > 0, when Sx is not of full rank. This augmentation stabilizes

Sx and yields a non-degenerate solution for our sparse factor model.

4.3 Selecting the number of factors

In order to select the number of latent factors r, we follow Onatski (2010). To the best of our

knowledge, Onatski’s method is the only one, which does not explicitly require that all factors

are strong. Therefore, it is suitable for our setting, which allows as well for weak factors. The

method uses the difference in subsequent eigenvalues and chooses the largest r̂ such that:

{r̂ ≤ rmax : πr̂((X
′X)/T )− πr̂+1((X

′X)/T ) > ξ},

where ξ is a fixed positive constant, rmax is an upper bound for the possible number of factors

and πr̂((X
′X)/T ) denotes the r̂-th largest eigenvalue of the covariance matrix of X. For the

choice of ξ, the empirical distribution of the eigenvalues of the data sample covariance matrix is

taken into account.7 However, the estimation of the number of factors based on the empirical

distribution of the eigenvalues of the sample covariance matrix still requires a clear separation of

7 We refer to Onatski (2010) for the detailed description of the determination of ξ.
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the eigenvalues of the common and idiosyncratic component. Therefore, its selection accuracy

depends on the degree of differentiability between the two components. Nevertheless, even if

the selection method of Onatski (2010) overestimates the true number of factors, the sparsity

assumption in our setting would allow us to disentangle the informative factors from those that

are too weak. Thus, compared to the standard approximate factor model we avoid including

redundant factors that amplify the misspecification error. Moreover, to further support the

above argument, we refer to Yu and Samworth (2013), who show that in the weak factor setting

the true number of factors is not asymptotically overestimated.

4.4 Choosing the tuning parameter

As for any penalized estimation approach, the selection of the tuning parameter µ is crucial, as

it controls the degree of sparsity in the factor loadings matrix and it affects the performance

of our estimator. In our case we select µ based on a type of Bayesian information criterion,

according to:

IC(µ) = L
(
Λ̂, SF̂ , Σ̂

τ
u

)
+ 2κµ

logN

N

√
3 logN

T
(20)

where κµ denotes the number of non-zero elements in the factor loadings matrix Λ̂ for a given

value of µ and L
(
Λ̂, SF̂ , Σ̂

τ
u

)
is the value of the log-likelihood function in equation (3), evaluated

at the estimates of the factors, the factor loadings and the covariance matrix of the idiosyncratic

errors. The penalty term in (20) has the property of converging to zero as both N and T

approach infinity. Hence, the penalization vanishes as the sample size increases and a smaller

value for µ is selected. The characteristics of our information criterion are therefore convenient

with respect to the asymptotic properties we require for the regularization parameter µ. In

fact, we need µ = o(1) in order to achieve estimation consistency, as elaborated in Section 3.

To select the optimal µ, we estimate the criterion in (20) for a grid of different values for µ

and choose the one that minimizes our information criterion. For the grid of the shrinkage

parameter we consider the interval µ = (0, µmax), where µmax denotes the highest value for the

shrinkage parameter such that all imposed model restrictions are still fulfilled.
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5 Monte Carlo Evidence

In the following, we present Monte Carlo evidence on the finite sample properties of our new

covariance estimator. In particular, we focus on the accuracy of the covariance matrix estimates

depending on the dimensionality as well as on the strength of correlations in the true covariance

matrix to be estimated. The simulation results for the SAF estimator are compared to the ones

obtained from eight competing estimators that are popular in the literature.

5.1 Monte Carlo Designs

For our Monte Carlo experiments we use three different designs of the true covariance matrix

Σ. In the first case, we consider the uniform covariance matrix design used in Abadir, Distaso,

and Žikeš (2014), which takes the following form:

σu
ii = 1 and σu

ij = η U(0,1), for i 6= j, (21)

where U(0,1) denotes a standard uniform random variable, and we set η ∈ {0.025, 0.05, 0.075}. In

this setting, η controls for the correlations among the variables, where an increase in η amplifies

the strength of the dependencies among the covariates.

For the second design, we use the sparse covariance matrix suggested by Bien and Tibshi-

rani (2011), which contains zero entries for the off-diagonals with a certain probability. More

specifically, the ij-th element of the covariance matrix σij = σji is assigned to be non-zero

with probability p, where p ∈ {0.05, 0.075, 0.1}. Similar as in the uniform design, the diagonal

elements are set to 1. The non-zero off-diagonal elements are independently drawn from the

uniform distribution U(0,0.2).

Finally, the last design we consider is based on a generalized spiked covariance model as in

Bai and Yao (2012). More precisely, we use the following definition:

Σs = diag (r1, r2, r3, r4, 0, · · · , 0) + Σu, (22)

where r1 − r4 correspond to four spiked eigenvalues and Σu is a covariance matrix based on the

uniform design in equation (21). As this covariance matrix design complies with the approximate
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factor model framework, estimation approaches that are based on a factor model specification

might benefit from this setting. More precisely, the first part of equation (22) is in accordance

with the eigenvalue distribution of the common component in an AFM with four factors, whereas

the second part in (22) corresponds to the covariance matrix of the idiosyncratic component

and allows for weak correlations among the errors. In the simulation, we consider the following

specification for the spiked eigenvalues: r1 = r2 = N, r3 = N0.8, r4 = N0.5. This design is in

line with the weak factor framework, where the first two factors are strong and the last two

correspond to weak factors.

For all three covariance matrix designs, we draw a time independent random data series X

from a multivariate normal distribution with zero population mean.8 The time dimension T is

set to 60, which relates to a dataset with 5 years of monthly data. The number of replications is

1000. Further, we consider several dimensions for X and set N ∈ {30, 50, 100, 200}. As goodness

of fit criterion for the difference between the true and the estimated covariance matrix, we use

the Frobenius norm.

5.2 Alternative covariance estimation strategies

A. Factor Models

1. Fan, Liao, and Mincheva (2013) (POET)

In our comparative study we include the POET estimator by Fan, Liao, and Mincheva (2013)

that is based on the standard approximate factor model with a dense factor loadings matrix and

a sparse idiosyncratic error covariance matrix. Similar to SAF, we use the number of factors

selected by Onatski (2010).

2. Doz, Giannone, and Reichlin (2011) (DFM)

To allow for some dynamics in the latent factors, we consider also a dynamic factor model

originally proposed by Geweke (1977). Specifically, the dynamic factor model is represented by

8 The same Monte Carlo experiments are carried out based on data from a multivariate t-distribution with five
degrees of freedom. The results are rather similar to the multivariate normal setting and can be obtained upon
request.

20



the following equation:

xit = B′
i(L)ft + εit, (23)

where Bi(L) =
(
bi1 + bi2L+ · · · + bipL

p
)
and L corresponds to the lag operator such that, ∀p,

Lpft = ft−p. In this setup ft =
(
f1t, f2t, . . . , fqt

)′
is a (q × 1)-dimensional vector of dynamic

factors following a VAR process and bij, j = 1, . . . , p denote the corresponding q-dimensional

factor loadings. In order to estimate the dynamic factor model in (23), we use the two step

procedure of Doz, Giannone, and Reichlin (2011). The estimation requires that the number

of dynamic factors is given ex-ante. We use the consistent method by Bai and Ng (2007) to

determine q.

B. Covariance Matrix Shrinking Strategies

Within the class of covariance matrix shrinkage strategies, we consider the method proposed

by Ledoit and Wolf (2003), the design-free estimator by Abadir, Distaso, and Žikeš (2014) and

Ledoit and Wolf (2018).

1. Ledoit and Wolf (2003) (LW)

The LW approach shrinks the sample covariance matrix Sx towards the covariance matrix of a

single index model that is well-conditioned. This yields the following definition:

Σ̂LW = α∗Sx + (1− α∗)Σ̂SIM,

where α∗ ∈ (0, 1) is a constant, which corresponds to the shrinkage intensity. Ledoit and Wolf

(2003) propose the following estimator to be used in practice α̂∗ = 1
T

τ−ρ
γ , where τ denotes the

error on the sample covariance matrix, ρ measures the covariance between the estimation errors

of Σ̂SIM and Sx and γ accounts for the misspecification of the shrinkage target Σ̂SIM.

2. Abadir, Distaso, and Žikeš (2014) (ADZ)

The design-free estimator for the covariance matrix by Abadir, Distaso, and Žikeš (2014) aims

to improve the estimation of the eigenvalues P̂ of Sx, that is a possible source of ill-conditioning.
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The authors consider the following spectral decomposition of Sx:

Sx = Γ̂P̂ Γ̂′. (24)

In order to obtain an improved estimator for P ,X is split into two subsamplesX =

(
X1
N×n

, X2
N×(T−n)

)
.

Calculating the sample covariance matrix for the first n observations yields:

S1 =
1

n
X1MnX

′
1 = Γ̂1P̂1Γ̂

′
1, (25)

whereMn = In− 1
n1n1

′
n is the de-meaning matrix of dimension n and 1n denotes a n×1 vector of

ones. The spectral decomposition of S1 provides the matrix of eigenvectors Γ̂1 and the diagonal

matrix of eigenvalues P̂1.

In the second step, an improved estimator for P is computed from the remaining orthogo-

nalized observations:

P̃ = diag

(
Cov

[
Γ̂′
1X2

])
= diag

(
Γ̂′
1S2Γ̂1

)
. (26)

The new estimator for the covariance matrix is now obtained according to:

Σ̂AZD = Γ̂P̃ Γ̂′. (27)

3. Ledoit and Wolf (2018) (LW-NL)

Another method that aims to improve on the estimation of the eigenvalues of Sx is provided by

Ledoit and Wolf (2018). The covariance estimator is given by:

Σ̂LW-NL = Γ̂D̂Γ̂′, (28)

where Γ̂ are the sample eigenvectors of Sx and the eigenvalues in the diagonal matrix D̂ are

estimated in a non-linear fashion as in Theorem 6.2. in Ledoit and Wolf (2018).

C. Sparse Covariance Estimators

The following estimators are explicitly designed to provide sparse covariance matrices. Hence,
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these models are appropriate for empirical settings that are reflected by our second simulation

design.

1. Rothman, Levina, and Zhu (2009) (ST)

As a special case of the generalized thresholding estimators studied by Rothman, Levina, and

Zhu (2009), we use the soft-thresholding (ST) method as a sparse covariance estimator and

obtain:

Σ̂ST = σ̂ST,ij, σ̂ST,ij =





σ̂s,ij, i = j

S(σ̂s,ij, κ), i 6= j

where σ̂s,ij is the ij-th element of the sample covariance matrix and S denotes the soft-thresholding

operator defined in (8). The thresholding parameter κ is selected by minimizing the difference

between Σ̂ST and Sx in Frobenius norm based on cross-validation.

2. Bien and Tibshirani (2011) (BT)

The authors propose a penalized maximum likelihood estimator based on a lasso penalty in order

to allow for sparsity in the covariance matrix and to reduce the effective number of parameters.

More specifically, the following objective function is optimized:

min
Σ≻0

log det (Σ) + tr
(
Σ−1Sx

)
+ αN

N∑

i=1

N∑

j=1

∣∣hijσij
∣∣ ,

where αN is a regularization parameter selected based on 5-fold cross-validation. The ij-th

element of the selection matrix H is defined as hij = 1l {i 6= j} and enables an equal penalization

of the off-diagonal elements and leaves the diagonal elements unaffected. Furthermore, Bien and

Tibshirani (2011) show that the estimated sparse covariance matrix is positive definite.

5.3 Simulation results

Table 1 below contains the Monte Carlo results for the uniform design of the true covariance

matrix, Table 2 gives the results based on the sparse covariance matrix design, while Table 3

shows the results for the covariance matrix design with spiked eigenvalues. Interestingly, we find

a very similar and clear picture. In terms of the goodness of fit, our sparse approximate factor

model approach provides the smallest Frobenius norm, i.e. the SAF fits the true covariance
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matrix best. These results hold for all of the three rather different designs, all dimensions and

degrees of correlation between the variables. Note that the advantage of the SAF model in

accurately estimating the true covariance matrix is even more pronounced when N increases,

especially for the two high dimensional settings with N = 100, 200 and T = 60.

Concerning the alternative approaches, ST, which is rather similar to our approach, performs

second best in most of the scenarios. However, for small samples (N = 30, 50) it is outperformed

by LW-NL, for the uniform and sparse covariance matrix designs. Furthermore, for the uniform

covariance matrix design for high dimensions and very strong dependencies (N = 100, 200, η =

0.075), ADZ performs slightly better than ST. It is also interesting to note that direct l1-norm

penalization of the covariance matrix as suggested by Bien and Tibshirani (2011) does not do

nearly as well as our approach, which profits from sparsity in the factor loadings matrix and

thresholding of the covariance matrix of the idiosyncratic component. Moreover, the results for

the POET estimator by Fan, Liao, and Mincheva (2013) that allows only for sparsity in the

idiosyncratic error covariance matrix indicate that allowing for sparsity in the factor loadings

matrix leads to a considerable improvement in the estimation accuracy.
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Table 1: Simulation results - Uniform Covariance Matrix Design

N Model
η

N Model
η

0.025 0.05 0.075 0.025 0.05 0.075

30

Sample 14.80 14.80 14.83

100

Sample 168.25 167.80 167.00

SAF 0.18 0.72 1.63 SAF 2.30 8.40 17.82

POET 6.55 6.81 7.12 POET 25.82 28.34 32.02

DFM 6.41 6.59 6.84 DFM 25.53 27.94 31.74

LW 3.45 3.77 4.50 LW 15.19 20.52 25.79

ADZ 2.05 2.60 3.31 ADZ 7.07 13.77 26.22

LW-NL 0.52 1.06 1.77 LW-NL 12.86 22.42 31.99

ST 1.19 1.72 2.64 ST 5.36 11.60 21.82

BT 1.83 2.38 3.29 BT 11.60 17.64 28.46

50

Sample 41.51 41.35 41.33

200

Sample 674.31 673.18 672.10

SAF 0.52 2.05 4.59 SAF 9.69 32.21 61.62

POET 11.16 11.91 12.24 POET 64.86 78.28 98.74

DFM 11.00 11.69 12.03 DFM 64.20 77.51 98.85

LW 5.96 7.31 8.75 LW 44.30 66.20 90.32

ADZ 3.75 5.17 6.93 ADZ 23.45 43.15 68.72

LW-NL 1.50 2.80 5.02 LW-NL 57.47 123.49 117.76

ST 2.15 3.72 6.24 ST 14.87 39.81 81.16

BT 4.29 5.85 8.48 BT 35.32 59.57 100.65

Note: The table gives the mean goodness of fit in terms of the Frobenius norm for T =
60. The sparse approximate factor model (SAF) is compared to the POET estimator
by Fan, Liao, and Mincheva (2013) (POET), the dynamic factor model (DFM), the
shrinkage estimator by Ledoit and Wolf (2003) (LW), the design-free estimator by
Abadir, Distaso, and Žikeš (2014) (ADZ), the non-linear shrinkage estimator by Ledoit
and Wolf (2018) (LW-NL), the soft-thresholding estimator of Rothman, Levina, and
Zhu (2009) (ST) and the shrinkage estimator by Bien and Tibshirani (2011) (BT).
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Table 2: Simulation results - Sparse Covariance Matrix Design

N Model
p

N Model
p

0.05 0.075 0.1 0.05 0.075 0.1

30

Sample 14.78 14.80 14.75

100

Sample 168.06 167.84 167.08

SAF 0.58 0.89 1.17 SAF 6.78 10.07 13.29

POET 6.92 7.24 7.72 POET 31.25 34.66 37.90

DFM 6.78 7.10 7.32 DFM 30.99 34.54 37.63

LW 3.67 3.88 4.28 LW 18.19 21.56 24.20

ADZ 2.45 2.86 3.12 ADZ 13.13 16.23 19.20

LW-NL 0.96 1.31 1.55 LW-NL 18.52 19.88 22.30

ST 1.59 1.88 2.19 ST 9.89 13.23 16.46

BT 2.67 3.01 3.29 BT 16.19 19.30 23.04

50

Sample 41.48 41.41 41.24

200

Sample 673.78 673.22 672.50

SAF 1.61 2.43 3.26 SAF 27.90 40.80 53.15

POET 12.37 13.48 13.99 POET 87.05 101.04 114.01

DFM 12.24 13.15 13.86 DFM 86.95 101.35 114.55

LW 6.65 7.56 8.21 LW 56.56 70.98 82.47

ADZ 4.58 5.47 6.51 ADZ 40.81 53.45 64.71

LW-NL 2.87 3.71 4.74 LW-NL 37.61 53.44 71.06

ST 3.24 4.12 4.91 ST 33.11 46.32 58.93

BT 5.37 6.23 7.11 BT 52.26 65.41 77.36

Note: The table gives the mean goodness of fit in terms of the Frobenius norm for T =
60. The sparse approximate factor model (SAF) is compared to the POET estimator
by Fan, Liao, and Mincheva (2013) (POET), the dynamic factor model (DFM), the
shrinkage estimator by Ledoit and Wolf (2003) (LW), the design-free estimator by
Abadir, Distaso, and Žikeš (2014) (ADZ), the non-linear shrinkage estimator by Ledoit
and Wolf (2018) (LW-NL), the soft-thresholding estimator of Rothman, Levina, and
Zhu (2009) (ST) and the shrinkage estimator by Bien and Tibshirani (2011) (BT).
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Table 3: Simulation results - Spiked Eigenvalues Covariance Matrix Design

N Model
η

N Model
η

0.025 0.05 0.075 0.025 0.05 0.075

30

Sample 252.88 240.35 237.77

100

Sample 2325.99 2406.18 2578.82

SAF 78.01 73.77 70.81 SAF 656.21 772.62 847.54

POET 250.41 238.32 236.63 POET 2211.16 2302.75 2488.71

DFM 335.57 316.09 323.14 DFM 3361.22 3301.51 3273.06

LW 210.24 195.12 188.94 LW 1699.02 1737.57 1694.48

ADZ 283.31 275.72 278.04 ADZ 41145.11 42122.00 41766.09

LW-NL 391.13 380.93 375.93 LW-NL 1746.69 1834.29 2027.14

ST 108.75 92.99 94.77 ST 859.30 940.71 1099.20

BT 105.53 94.62 93.00 BT 681.50 794.61 864.56

50

Sample 689.78 669.87 648.54

200

Sample 8983.25 9542.91 9035.84

SAF 228.00 215.72 208.22 SAF 2827.89 3067.26 2882.80

POET 670.36 653.15 635.16 POET 8445.79 9074.59 8580.13

DFM 844.69 915.17 878.77 DFM 12574.89 12478.04 12228.50

LW 548.33 546.30 503.67 LW 6026.48 5866.25 4985.43

ADZ 10544.76 10602.05 10594.88 ADZ 10232.14 9898.43 10319.59

LW-NL 1545.18 1521.92 1514.58 LW-NL 6784.22 7159.06 7039.18

ST 296.52 275.82 273.25 ST 3775.49 4204.74 3916.60

BT 235.91 241.77 231.34 BT 3292.51 3169.52 3215.86

Note: The table gives the mean goodness of fit in terms of the Frobenius norm for T = 60. The sparse
approximate factor model (SAF) is compared to the POET estimator by Fan, Liao, and Mincheva
(2013) (POET), the dynamic factor model (DFM), the shrinkage estimator by Ledoit and Wolf (2003)
(LW), the design-free estimator by Abadir, Distaso, and Žikeš (2014) (ADZ), the non-linear shrinkage
estimator by Ledoit and Wolf (2018) (LW-NL), the soft-thresholding estimator of Rothman, Levina,
and Zhu (2009) (ST) and the shrinkage estimator by Bien and Tibshirani (2011) (BT).

6 An Application to Portfolio Choice

Empirical portfolio models, particularly when applied to large asset spaces, suffer from a high

degree of instability. The estimation of N mean and N(N+1)/2 variance-covariance parameters

yields extremely noisy estimates of portfolio weights with large standard errors. It is well-

documented that these estimated portfolios show poor out-of-sample performance, extreme short

positions and no diversification (e.g. Jobson and Korkie (1980) and Michaud (1989)). In order

to mitigate these shortcomings and to improve portfolio estimates against extreme estimation

noise, a range of alternative strategies have been proposed including shrinkage estimation of

the covariance matrix of asset returns (Ledoit and Wolf (2003); Ledoit and Wolf (2018) and

Kourtis, Dotsis, and Markellos (2012)).
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In the following, we investigate to what extent the SAF model can be used to obtain robus-

tified estimates of high-dimensional covariance matrices of asset returns as input for empirical

portfolio models. In an out-of-sample portfolio forecasting experiment, we compare the perfor-

mance of the global minimum variance portfolio (GMVP) strategy based on a covariance matrix

estimated by our sparse factor model to popular alternative portfolio strategies with regularized

covariance estimators. As in many other studies, we restrict our analysis to the GMVP, because

its vector of portfolio weights, ω = Σ−11N
1′
N
Σ−11N

, is solely a function of the covariance matrix of the

asset returns. Thus, for estimating the GMVP the mean vector of asset returns is redundant

and its empirical performance only depends on the quality of the covariance matrix estimator.

In a first step, we theoretically analyze the properties of the GMVP weights based on the

SAF estimator. The results are summarized in the following proposition:

Proposition 6.1. Based on the general definition of the covariance matrix of an approximate

factor model given in Section 2.4, we obtain:

r∑

k=1

πk
(
ΛΛ′) = tr

(
ΛΛ′) =

N∑

i=1

r∑

k=1

λ2
ik

and

N∑

i=1

πi

(
Σ−1

)
≤

N∑

i=1

πi (IN )−
∑N

i=1 πi
(
ΛΛ′)

N +
∑N

i=1 πi (ΛΛ
′)
.

The proof is given in Appendix A.4. Proposition 6.1 shows that allowing for sparsity in the

factor loadings matrix leads to shrinking the eigenvalues of the precision matrix towards the

ones of an identity matrix. Hence, the portfolio weights based on our SAF model are shrunken

towards those of the 1/N portfolio. This result makes intuitively sense as it is reasonable to

invest in the equally weighted portfolio in the case of great estimation instabilities regarding

the covariance matrix.

6.1 Data and Design of the Forecasting Experiment

The dataset comprises the monthly excess return data of stocks of the S&P 500 index, that were

constituents of the index in December, 2016. The excess returns are obtained by subtracting

the corresponding one-month Treasury bill rate from the asset returns. We consider the time

period from January, 1980 until December, 2016, which yields T = 443 monthly returns for

28



each of the 205 available stocks.9 In order to check the performance of our estimator with

respect to the dimensionality of the asset space, we consider the following portfolio sizes: N ∈

{30, 50, 100, 200}. Out of the 205 stocks, we select at random individual subsets from the overall

number of assets and work with the selected assets for the entire forecasting experiment.

Since by construction, a theoretical portfolio built on a subset of assets from a larger portfo-

lio cannot outperform the larger one, an observed inferiority of the larger empirical portfolio can

only be the consequence of higher estimation noise due to the larger dimensionality, which over-

compensates for the ex-ante theoretical superiority. Therefore, this selection strategy provides

us with insights into the impact of estimation noise on the performance of empirical portfolios.

In order to estimate the portfolio weights for each strategy, we apply a rolling window

approach with h = 60 months, corresponding to 5 years of historic data. Thus, at time t we use

the last 60 months from t− 59 until t for our estimation. Using the estimated portfolio weights,

we compute the out-of-sample portfolio return r̂pt+1(s) = ω̂(s)′rt+1 for the period t+1 for the 12

different estimation strategies s = 1, . . . , 12. All portfolios are rebalanced on a monthly basis.

This generates a series of T − h out-of-sample portfolio returns. The results are then used to

estimate the mean µ(s) and variance σ2(s) of the portfolio returns for each strategy by their

empirical counterparts:

µ̂(s) =
1

T

T∑

t=h+1

r̂pt (s) and σ̂2(s) =
1

T − 1

T∑

t=h+1

(
r̂pt (s)− µ̂(s)

)2
. (29)

We repeat this procedure 100 times to avoid that the out-of-sample results depend on the initially

randomly selected stocks. Hence, all results reported below are average outcomes across the

100 forecasting experiments.

6.2 Competing Estimation Strategies

For our empirical portfolio application, we consider factor based models (with latent and ob-

servable factors) as well as models based on direct shrinkage of the covariances besides two

fundamental baseline strategies: the naive 1/N strategy and the simple plug-in estimator for

the GMVP.10

9 The return data are retained from Thompson Reuters Datastream.
10 We also included in our extended comparative study the approaches by Frahm and Memmel (2010) and Pollak
(2011), which are based on direct shrinkage of the portfolio weights. The performance of these two models
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• Equally Weighted Portfolio (1/N)

The equally weighted or 1/N portfolio strategy comprises identical portfolio weights of size 1/N ,

for each of the risky assets. By ignoring any type of optimizing portfolio strategy it often serves

as a benchmark case to be outperformed in empirical performance comparisons. As the weights

have not to be estimated, the 1/N -strategy is free from any estimation risk. Moreover, the

1/N portfolio weights can be considered as the outcome for portfolio weights under extreme

l2-penalization. DeMiguel, Garlappi, and Uppal (2009) find that the mean-variance portfolio

and most of its extensions cannot significantly outperform the 1/N portfolio.11

• Plug-in GMVP

As the extreme alternative to the 1/N -strategy, we consider the plug-in estimator of the GMVP

based on the sample covariance matrix of the asset returns. The plug-in estimator is free from

any type of regularization. The plug-in approach yields unbiased estimates of the true weights

(Okhrin and Schmid (2006)), but the weight estimates are extremely unstable when the asset

space is large relative to the time series dimension. For some of our empirical designs with

N = 100, 200, the asset dimension exceeds the sample size, T = 60. For these cases the plug-in

estimator is infeasible, because the sample covariance matrix is singular.

Factor models with observable factors

In addition, we consider two factor models that have been frequently used in the empirical

finance literature. Contrary to the approximate factor models, the factors in these models are

not latent but observable time series variables. In this respect, these type of models incorporate

more information than approaches, which solely use the information on the return process itself

to estimate the covariance matrix of returns. However, the inclusion of additional time series

information may give rise to an additional source of misspecification, if the factor specification

fails to describe the true data generating process properly.

• The Single Index Model (SIM)

was clearly inferior, so that we refrained from giving the results here. However, they can be obtained from the
authors upon request.

11 Kazak and Pohlmeier (2018) show, however, that conventional portfolio performance tests suffer from very low
power, so that the rejection of null hypothesis of equal performance of a given data-based strategy and the
1/N-strategy is very unlikely.
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The single index model by Sharpe (1963) is based on a single observable factor, f1t, representing

the excess market return:

xit = α+ βi1f1t + εit . (30)

In our study, we use as a proxy for the market return, the value-weighted returns of all Center

for Research in Security Prices (CRSP) firms incorporated in the US and listed on the AMEX,

NASDAQ, or the NYSE. The one-month treasury bill rate serves as the risk free rate to construct

the excess market returns. The estimator for the covariance matrix of the single index model

is given by:

Σ̂SIM = β̂1σ̂f1 β̂
′
1 + D̂ ,

where Σ̂f1 denotes the sample variance of the market excess returns. β̂1 represents the OLS

estimates of the factor loadings and D̂ is a diagonal matrix of the OLS residual variances of

regression model (30) assuming that the observed factor picks up the cross-correlations of the

returns completely.

• Fama and French 3-Factor Model (FF3F)

The Fama and French 3-factor model offers an extension to the single index model by Sharpe

(1963) and is defined as:

Xt = β1f1t + β2f2t + β3f3t + εt . (31)

The first factor f1 is identical to the one of the one-factor model in (30). The second factor

f2t often denoted by the acronym SMB is composed as the average returns on the three small

portfolios minus the average returns on the three big portfolios. In particular, it defines a zero-

cost portfolio that is long in stocks with a small market capitalization and short in stocks with

a large market capitalization.12 The third factor f3t, denoted as HML, comprises a zero-cost

portfolio that is long in stocks with a high book-to-market value and short in low book-to-market

12 It is important to note that securities with a long position in a portfolio are expected to rise in value and on
the other hand securities with short positions in a portfolio are expected to decline in value.
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stocks.13 In matrix notation (31) is given by:

X = βF ′ + ε , (32)

where F = [f1, f2, f3] with dimension T × 3 and β = [β1, β2, β3] with dimension N × 3.

The estimator for the covariance matrix for the 3-factor model by Fama and French (1993) ΣFF

is equal to the following equation:

Σ̂FF = β̂Σ̂F β̂
′ + D̂FF ,

where Σ̂F denotes the covariance matrix of the three factors and D̂FF represents a diagonal

matrix that contains the variances of the OLS residuals covariance matrix on its main diagonal.

Covariance Matrix Estimation Strategies

Further, we consider from the group of covariance matrix estimators introduced in Section

5.2 the plug-in estimation approaches for the GMVP weights based on the shrinkage covariance

estimator by Ledoit and Wolf (2003) (LW) and the design free estimator by Abadir, Distaso, and

Žikeš (2014) (ADZ). We refrain from considering the soft thresholding estimator (ST), because,

as mentioned earlier, this estimator does not necessarily yield estimates of the covariance matrix,

which are a positive definite, hence its inverse, needed for the computation of the GMVP weights,

might be ill-conditioned. However, in addition to the estimators considered in the Monte Carlo

study in Section 5, we consider the shrinkage approach by Kourtis, Dotsis, and Markellos

(2012) (KDM), which targets directly on the inverse of the covariance matrix and is particularly

designed for portfolio applications.

• Kourtis, Dotsis, and Markellos (2012) (KDM)

The estimation method by Kourtis, Dotsis, and Markellos (2012) directly shrinks the inverse

of the sample-based covariance matrix Sx towards the identity matrix IN and the inverse of

the covariance matrix resulting from a single index model by Sharpe (1963), according to the

13 A detailed definition of the factors can be found on the website of Kenneth R. French. See
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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following equation:

Σ̂−1
KDM = ζ1S

−1
x + ζ2IN + ζ3Σ̂

−1
SIM. (33)

The authors show that the resulting weights are a three-fund strategy, i.e. a linear combination

of the sample-based weights ω̂, the equally weighted portfolio weights ω̂1/N and those of the

single index model model ω̂SIM. In order to select the optimal shrinkage coefficients in (33),

the authors suggest minimizing the out-of-sample portfolio variance using cross-validation. It

is important to note that this portfolio strategy is also applicable for the case when N > T .

In order to obtain reliable results for the inverse of Sx the authors use the Moore-Penrose

pseudo-inverse.

6.3 Criteria for Performance Evaluation

For our analysis, we consider the following four different evaluation criteria to compare the

performance of the previously introduced models.

1. Standard Deviation (SD): The out-of-sample standard deviation is defined as the square

root of the variance σ̂2(s) given in Equation (29). This measure yields an estimate of

the performance criterion the GMVP strategy is designed for. Moreover, for the GMVP-

strategy a clear ranking concerning portfolios of different dimensions exists, i.e. σ2(N) ≤

σ2(N ′) for N ≤ N ′ , while the variance of the equally weighted portfolio is independent

of the portfolio dimension.

2. Average Return (AV): The out-of-sample average return is expressed as µ̂(s) from (29).

3. Certainty Equivalent (CE): The CE is defined as ĈE(s) = µ̂(s) − γ
2 · σ̂2(s), where γ

specifies the risk aversion of the investor. Following DeMiguel, Garlappi, Nogales, and

Uppal (2009) we set γ = 1. The CE is defined as the risk-free rate that an investor is

willing to accept to make him indifferent to an investment based on the risky portfolio

strategy s in terms of expected utility.

4. Sharpe Ratio (SR): The Sharpe ratio is given by ŜR(s) = µ̂(s)/σ̂(s).
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6.4 Out-of-Sample Portfolio Performance

Table 4 contains the annualized results of our comparative study on the out-of-sample perfor-

mance of different portfolio estimation approaches. The results represent average outcomes

across the 100 different forecasting experiments for each of the four performance measures. Our

sparse approximate factor model (SAF) yields the lowest out-of-sample portfolio standard de-

viation for all portfolio dimensions, i.e. it is performing best for the performance criterion the

GMVP-strategy is designed for.

In theory, the GMVP-strategy may not necessarily outperform the 1/N -strategy in terms

of the remaining three performance criteria, since it completely disregards optimization with

respect to the expected portfolio return. Nevertheless, our SAF model also outperforms the

1/N -strategy and the other estimation approaches in terms of AV, CE and SR, which depend

on the expected return. In the portfolio forecasting experiment, our regularization method does

best for the expected out-of-sample portfolio return.

It is of utmost importance to note that the superiority of our approach does not only hold for

different performance measures, but also for all portfolio dimensions. The SAF model performs

best for low, but also for high dimensional portfolios, for which the sample size is much smaller

than the portfolio dimension, i.e. T ≪ N . This indicates, at least for this specific application,

that the selection of the penalty parameter is reasonable.
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Table 4: Estimation results for the Portfolio Application

Model 1 / N GMVP SAF POET DFM SIM FF3F LW KDM ADZ LW-NL BT

N = 30

SD 0.1572 0.2184 0.1519 0.1694 0.1661 0.1574 0.1557 0.1638 0.1680 0.1618 0.1620 0.1571

AV 0.1002 0.0970 0.1014 0.0920 0.0954 0.1005 0.0955 0.0958 0.0967 0.0938 0.0976 0.0996

CE 0.0878 0.0731 0.0898 0.0776 0.0816 0.0881 0.0834 0.0824 0.0826 0.0807 0.0845 0.0873

SR 0.6372 0.4431 0.6669 0.5417 0.5747 0.6386 0.6138 0.5838 0.5761 0.5786 0.6024 0.6335

N = 50

SD 0.1543 0.3812 0.1468 0.1654 0.1619 0.1545 0.1519 0.1603 0.1590 0.1543 0.1585 0.1610

AV 0.0996 0.1041 0.1041 0.0971 0.0949 0.0999 0.0936 0.1008 0.0966 0.0994 0.0927 0.1012

CE 0.0876 0.0312 0.0933 0.0834 0.0817 0.0879 0.0820 0.0880 0.0839 0.0875 0.0801 0.0882

SR 0.6452 0.2725 0.7091 0.5876 0.5871 0.6463 0.6160 0.6296 0.6079 0.6444 0.5847 0.6284

N = 100

SD 0.1525 - 0.1444 0.1593 0.1580 0.1527 0.1489 0.1558 0.1644 0.1534 0.1522 0.1600

AV 0.0999 - 0.1067 0.0972 0.0907 0.1003 0.0913 0.1021 0.0931 0.0999 0.1001 0.0993

CE 0.0883 - 0.0963 0.0845 0.0783 0.0886 0.0802 0.0900 0.0796 0.0881 0.0885 0.0865

SR 0.6556 - 0.7393 0.6105 0.5755 0.6567 0.6127 0.6560 0.5666 0.6514 0.6573 0.6212

N = 200

SD 0.1505 - 0.1410 0.1534 0.1559 0.1507 0.1465 0.1496 0.1539 0.1455 0.1459 0.1472

AV 0.0993 - 0.1071 0.0998 0.0904 0.0996 0.0893 0.1037 0.0934 0.1014 0.1026 0.0984

CE 0.0879 - 0.0972 0.0880 0.0782 0.0882 0.0786 0.0925 0.0815 0.0909 0.0920 0.0876

SR 0.6596 - 0.7600 0.6505 0.5801 0.6608 0.6094 0.6932 0.6065 0.6971 0.7036 0.6689

Note: The sparse approximate factor model (SAF) in the third column is compared to the equally weighted portfolio (1/N),
the GMVP, the POET estimator by Fan, Liao, and Mincheva (2013) (POET), the Dynamic Factor Model (DFM), the Single
Factor Model by Sharpe (1963) (SIM), the Three-Factor Model by Fama and French (1993) (FF3F), the estimators by Ledoit
and Wolf (2003) (LW), Kourtis, Dotsis, and Markellos (2012) (KDM), Abadir, Distaso, and Žikeš (2014) (ADZ), Ledoit and
Wolf (2018) (LW-NL) and Bien and Tibshirani (2011) (BT).

As mentioned earlier, increasing the portfolio dimension does not necessarily improve the out-

of-sample performance of an empirical portfolio as the theoretical gains maybe overcompensated

by the increase in estimation noise due to the increase in the number of parameters to be

estimated. It is not too surprising that this phenomenon is most dramatically pronounced for

the plug-in estimator of the GMVP, but we also find it to some extent for the DFM. Moreover,

for the SIM and FF3F, we do not find a strict monotonicity between portfolio dimension and

portfolio performance, while the performance of our SAF model strictly increases with N .

While in the portfolio forecasting experiment for any performance measure and any portfolio

dimension our sparse factor model shows the best performance, there is no clear further ranking
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regarding the other approaches. FF3F is performing second best in terms of the minimization of

portfolio risk for all portfolio dimensions, but it is outperformed by other estimation approaches

when performance measures other than the portfolio risk are considered.

Our comparative study also confirms the findings of DeMiguel, Garlappi, and Uppal (2009)

that the 1/N portfolio is a strong competitor for many alternative portfolio strategies. For

low dimensions (N = 30 and N = 50), we can see that, apart from our estimator only the

single factor model generates a higher average SR compared to the equally weighted portfolio,

although it is very close to it. In terms of the portfolio risk, only our method and FF3F reveal

performance superior to the 1/N portfolio for low dimensions of the asset space. The picture

slightly changes, when higher asset dimensions (N > 50) are considered. For higher dimensions,

the method by Abadir, Distaso, and Žikeš (2014) is a serious competitor to the 1/N portfolio.

This mirrors our finding from the simulation study in Section 5, where the ADZ estimator

performs comparatively well in high dimensional settings with strong linear dependencies.

Table 5 in Appendix B provides additional insights into the quality of the weight estimates.

The summary statistics indicate that the outstanding performance of the SAFmodel results from

effectively stabilizing the estimated portfolio weights by avoiding extreme positions (moderate

minima and maxima in the weight estimates) and by the low standard deviations. Furthermore,

the results show that the weights of our SAF estimator shrink towards the weights of the equally

weighted portfolio as N increases. This is in line with the theoretical results in Proposition 6.1.

The relative good performance of SIM and FF3F result from very low variation in the portfolio

weights, which come for the SIM with N = 200 close to the constant weights of the equally

weighted portfolio.

In order to check the robustness of our findings, which are based on data from January 1980

until December 2016, we also consider forecasts based on subperiods. We restrict our attention

to the standard deviation of the out-of-sample portfolio returns and consider how a gradual

increase of the evaluation sample affects the performance of the competing estimators. The

results are illustrated in Figure 4, where the portfolio standard deviation at time t incorporates

the out-of-sample portfolio returns until t (e.g. the out-of-sample portfolio standard deviation in

January 2005 incorporates the out-of-sample portfolio returns from January 1985 until January

2005). Special attention is given to the periods before and after the financial crisis in 2007.
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The graphs indicate that the SAF estimator also provides for different subperiods the lowest

portfolio standard deviation compared to FF3F and LW-NL. Note, that the difference is more

pronounced when the recent financial crisis period is included. Hence, in comparison to our

SAF model both, FF3F and LW-NL, fail to pick up the changing risk during the crisis and, as

a result, they provide more volatile portfolio estimates.

7 Conclusions

In this paper, we propose a novel approach for the estimation of high-dimensional covariance

matrices based on a sparse approximate factor model. The estimator allows for sparsity in the

factor loadings matrix by shrinking single elements of the factor loadings matrix to zero. Hence,

this setting reduces the number of parameters to be estimated and therefore leads to a reduction

in estimation noise. Furthermore, the sparse factor model framework allows for weak factors,

which only affect a subset of the available time series. Thus, our framework offers a convenient

generalization to the pervasiveness assumption in the standard approximate factor model that

solely leads to strong factors.

We prove average consistency under the Frobenius norm for the factor loadings matrix

estimator and consistency in the spectral norm for the idiosyncratic component covariance

matrix estimator based on our sparse approximate factor model. The factors estimated using

the GLS method are also shown to be consistent. Furthermore, we derive average consistency for

our factor model based covariance matrix estimator under the Frobenius norm for a particular

rate of divergence for the eigenvalues of the covariance matrix corresponding to the common

component. To the best of our knowledge, this result has not been shown in the existing

literature because of the fast diverging eigenvalues. Additionally, we provide consistency results

of our covariance matrix estimator under the weighted quadratic norm.

In our Monte Carlo study, we analyze the finite sample properties of our covariance matrix

estimator for different simulation designs for the true underlying covariance matrix. The results

show that our estimator offers the lowest difference in Frobenius norm to the true covariance

matrix compared to the competing estimators. Further, the benefit of the covariance matrix

estimator based on our sparse factor model is even more pronounced if the dimensionality of

the problem increases.
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In an out-of-sample portfolio forecasting experiment, we compare the performance of the

global minimum variance portfolio based on the covariance matrix estimator of our sparse

approximate factor model to alternative estimation approaches frequently used in the literature.

The forecasting results reveal that our estimator yields the lowest average out-of-sample portfolio

standard deviation across different portfolio dimensions. At the same time, it generates the

highest Certainty Equivalent and Sharpe Ratio compared to all considered portfolio strategies.

The performance gains of our SAF model are especially pronounced during the recent financial

crisis. Hence, our estimator has a stabilizing impact on the portfolio weights, especially during

highly volatile periods.

The results of our out-of-sample portfolio forecasting study show a substantial reduction

of the portfolio standard deviation of the dynamic factor model compared to the standard

approximate factor model, especially for small asset dimensions. Hence, it would be interesting

to analyze if a possible extension of our SAF model by considering dynamic factors, would

as well lead to a more efficient estimation of the covariance matrix. We leave this for future

research.
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Appendix

A Proofs

A.1 Consistency of the Sparse Approximate Factor Model Estimator

Proof. Theorem 3.1 (Consistency of the Sparse Approximate Factor Model Estimator)

Define the penalized log-likelihood

Lp(Λ,Σu) = Q1(Λ,Σu) +Q2(Λ,Σu) +Q3(Λ,Σu), (34)

where

Q1(Λ,Σu) =
1

N
log |Σu|+

1

N
tr
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+
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′Σ−1
u (Λ− Λ0)− (Λ− Λ0)

′ Σ−1
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u Λ
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]
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∣∣ΛΛ′ +Σu
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(
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)
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N
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)

Therefore, we can see that equation (34) can be written as

Lp(Λ,Σu) =
1

N
log
∣∣ΛΛ′ +Σu
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N
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(35)

Define the set,

Ψδ =
{
(Λ,Σu) : δ

−1 < πmin

(
Λ′Λ

Nβ

)
≤ πmax

(
Λ′Λ

Nβ

)
< δ

δ−1 < πmin (Σu) ≤ πmax (Σu) < δ
}
, for 1/2 ≤ β ≤ 1.
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Further, Φu = diag (Σu) and denotes a covariance matrix that contains only the elements of the

main diagonal of Σu.

We impose the following sparsity assumptions on Λ and Σu:

LN =

r∑

k=1

N∑

i=1

1l {λik 6= 0} = O (N)

SN = max
i≤N

N∑

j=1

1l
{
σu,ij 6= 0

}
,

where 1l {·} defines an indicator function that is equal to one if the argument in braces is true.

Hence, LN is the number of non-zero elements in the factor loadings matrix Λ and SN denotes

the maximum number of non-zero elements in each row of Σu, following Bickel and Levina

(2008a).

We introduce a lemma that will be necessary for the forthcoming derivations.

Lemma A.1.

(i) maxi,j≤N

∣∣∣ 1T
∑T

t=1 uitujt −E
[
uitujt

]∣∣∣ = Op

(√
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)

(ii) maxi≤r,j≤N

∣∣∣ 1T
∑T

t=1 fitujt

∣∣∣ = Op

(√
(logN)/T

)

Proof. See Lemmas A.3 and B.1 in Fan, Liao, and Mincheva (2011).

Lemma A.2.

sup
(Λ,Σu)∈Ψδ

∣∣Q3(Λ,Σu)
∣∣ = Op

(
logNβ

N
+

1

Nβ

logN
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)

Proof. The unpenalized log-likelihood

L(Λ,Σu) =
1

N
log
∣∣ΛΛ′ +Σu

∣∣+ 1

N
tr
(
Sx

(
ΛΛ′ +Σu

)−1
)
, (36)

can be decomposed in a similar fashion as in Lemma A.2. in Bai and Liao (2016).

The first term in equation (36) can be written as:

1

N
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∣∣ΛΛ′ +Σu
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N
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Hence, we have
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Now, we consider the second term 1
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. Hereby, Sx is defined as:
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where Su = 1
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t and the identification condition 1
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By the matrix inversion formula we have:
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Subsequently, we look at the terms A1 −A4, respectively.

Since πmax (Σu) and π−1
min

(
Λ′Λ

)
are bounded from above uniformly in Ψδ, we can derive the

following expressions similarly as in Bai and Liao (2016):
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By applying the matrix inversion formula we have,

A1 =
1

N
tr

(
Λ′
0Σ

−1
u Λ

(
Λ′Σ−1

u Λ
)−1

Λ′Σ−1
u Λ0

)

− 1

N
tr

(
Λ′
0Σ

−1
u Λ

(
Λ′Σ−1

u Λ
)−1 (

Ir + Λ′Σ−1
u Λ

)−1
Λ′Σ−1

u Λ0

)
,

where the second term can be bounded using (39) and (40), by the following:
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In the following, we define si(A) as the i-th singular value of a (m×n) matrix A. Furthermore,

smax(A) denotes the largest singular value of A. Using Lemma A.1., Fact 9.14.3 and Fact 9.14.23

in Bernstein (2009) and the fact that
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,
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we have:
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Similarly, we have that sup(Λ,Σu)∈Ψδ
|A3| = Op

(
1
N + 1

Nβ

logN
T

)
.

By the matrix inversion formula, we have for A4 the following:
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From equations (39) and (40), we see that the second term on the right hand side is uniformly
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of a smaller order than the first term. The first term of A4 is bounded by:
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Hence, we can bound the unpenalized log-likelihood function by:
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By the definition of Q3(Λ,Σu) we have:

sup
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Lemma A.3. For dT = logNβ
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T

Q1(Λ̂, Σ̂u) +Q2(Λ̂, Σ̂u) = Op (dT )
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Proof. If we consider equation (35) at the true parameter values, we get:
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Hence, by (34) and (41), we have:

Q1(Λ̂, Σ̂u) +Q2(Λ̂, Σ̂u) = Lp(Λ̂, Σ̂u)−Q3(Λ̂, Σ̂u)
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Therefore, by Lemma A.2. we have:
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Lemma A.4.
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Proof. By equation (42) and the definition of Q1(Λ̂, Σ̂u) and Q2(Λ̂, Σ̂u), we get:

B1 +B2 ≤ dT , (43)
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where B1 and B2 are defined as
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By equation (43), we can see that
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where Φu = diag (Σu) and denotes a covariance matrix that contains only the elements of the

main diagonal of Σu. Using the same argument as in the proof of Lemma B.1. in Bai and Liao

(2016), we get:

c
∥∥∥Φ̂−1

u − Φ−1
u0

∥∥∥
2

F
−Op

(√
logN

T

)∑

ij

∣∣∣Φu0,ij − Φ̂u,ij

∣∣∣ ≤ NdT

c
∥∥∥Φ̂−1

u − Φ−1
u0

∥∥∥
2

F
−Op

(√
logN

T

)
√
N
∥∥∥Φ̂u − Φu0

∥∥∥
F
≤ NdT

c
∥∥∥Φ̂−1

u − Φ−1
u0

∥∥∥
2

F
−Op

(√
logN

T

)
√
N

∥∥∥∥Φ̂u

(
Φ̂−1
u − Φ−1

u0

)
Φu0

∥∥∥∥
F

≤ NdT

c
∥∥∥Φ̂−1

u − Φ−1
u0

∥∥∥
2

F
−Op

(√
logN

T

)
√
N
∥∥∥Φ̂u

∥∥∥ ‖Φu0‖
∥∥∥Φ̂−1

u − Φ−1
u0

∥∥∥
F
≤ NdT
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Solving for
∥∥∥Φ̂−1

u −Φ−1
u0

∥∥∥
F
yields:

∥∥∥Φ̂−1
u − Φ−1

u0

∥∥∥
F
= Op

(√
N logN

T
+
√
NdT

)

1

N

∥∥∥Φ̂−1
u − Φ−1

u0

∥∥∥
2

F
= Op

(
logN

T
+ dT

)
= op(1)

Hence, we can conclude the proof by the following derivation:

1

N

∥∥∥Φ̂u − Φu0

∥∥∥
2

F
=

1

N

∥∥∥∥Φ̂u

(
Φ−1
u0 − Φ̂−1

u

)
Φu0

∥∥∥∥
2

F

≤ 1

N

∥∥∥Φ̂u

∥∥∥
2
‖Φu0‖2

∥∥∥Φ̂−1
u − Φ−1

u0

∥∥∥
2

F

In the following, we establish the consistency of the factor loadings estimator. Initially, we

bound the first part of B2 defined in equation (43).

Lemma A.5.

1

N
tr

[(
Λ̂− Λ0

)′
Σ̂−1
u

(
Λ̂− Λ0

)
−
(
Λ̂− Λ0

)′
Σ̂−1
u Λ̂

(
Λ̂′Σ̂−1

u Λ̂
)−1

Λ̂′Σ̂−1
u

(
Λ̂− Λ0

)]

≥ Op

(
LN

N

)
max
i≤N

∥∥∥λ̂i − λi0

∥∥∥
2

Proof.

1

N
tr

[(
Λ̂− Λ0

)′
Σ̂−1
u

(
Λ̂− Λ0

)
−
(
Λ̂− Λ0

)′
Σ̂−1
u Λ̂

(
Λ̂′Σ̂−1

u Λ̂
)−1

Λ̂′Σ̂−1
u

(
Λ̂− Λ0

)]

≥ 1

N
tr

[(
Λ̂− Λ0

)′ (
Λ̂− Λ0

)]
πmin

(
Σ̂−1
u

)

− 1

N
tr

[(
Λ̂− Λ0

)′ (
Λ̂− Λ0

)]
πmax

(
Σ̂−1
u Λ̂

(
Λ̂′Σ̂−1

u Λ̂
)−1

Λ̂′Σ̂−1
u

)

≥
[
Op

(
1

N

)
+Op

(
LN

N

)]
max
i≤N

∥∥∥λ̂i − λi0

∥∥∥
2
= Op

(
LN

N

)
max
i≤N

∥∥∥λ̂i − λi0

∥∥∥
2

The consistency result for Λ̂ is summarized in the following lemma.
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Lemma A.6.

max
i≤N

∥∥∥λ̂i − λi0

∥∥∥ = Op

(
µ+

√
NdT
LN

)

Proof. If we consider equation (43), Lemma A.4. and Lemma A.5., we have

Op

(
LN

N

)
max
i≤N

∥∥∥λ̂i − λi0

∥∥∥
2
+

1

N
µ

r∑

k=1

N∑

i=1

∣∣∣λ̂ik

∣∣∣− |λik0| ≤ dT

Op

(
LN

N

)
max
i≤N

∥∥∥λ̂i − λi0

∥∥∥
2
− 1

N
µ

r∑

k=1

N∑

i=1

|λik0| −
∣∣∣λ̂ik

∣∣∣ ≤ dT

Op

(
LN

N

)
max
i≤N

∥∥∥λ̂i − λi0

∥∥∥
2
− 1

N
µ

r∑

k=1

N∑

i=1

∣∣∣λ̂ik − λik0

∣∣∣ ≤ dT

Op

(
LN

N

)
max
i≤N

∥∥∥λ̂i − λi0

∥∥∥
2
−O

(
LN

N

)
µmax

i≤N

r∑

k=1

∣∣∣λ̂ik − λik0

∣∣∣ ≤ dT

Op

(
LN

N

)
max
i≤N

∥∥∥λ̂i − λi0

∥∥∥
2
−O

(
LN

N

)
µ
√
r

√
max
i≤N

∥∥∥λ̂i − λi0

∥∥∥
2
≤ dT

Solving for maxi≤N

∥∥∥λ̂i − λi0

∥∥∥ yields

max
i≤N

∥∥∥λ̂i − λi0

∥∥∥ ≤ µ+

√
µ2 +Op

(
NdT
LN

)

≤ µ+Op

(√
NdT
LN

)

Lemma A.7.

1

T

T∑

t=1

∥∥∥f̂t − ft

∥∥∥
2
= op(1)

Proof. By the definition of the factor estimator in equation (5) we have:

f̂t − ft = −
(
Λ̂′Φ̂−1

u Λ̂
)−1

Λ̂′Φ̂−1
u

(
Λ̂− Λ

)
ft +

(
Λ̂′Φ̂−1

u Λ̂
)−1

Λ̂′Φ̂−1
u ut (45)
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As LN = O
(
Nβ
)
, the first term on the right-hand side can be bounded by:

Op

(
N−β

)
√√√√

N∑

i=1

∥∥∥∥
(
Λ̂′Φ̂−1

u

)
i

(
λ̂i − λi

)∥∥∥∥
2

‖ft‖

≤ Op

(
N−β

)
√√√√√Op




N∑

i=1

∥∥∥λ̂i − λi

∥∥∥
2




≤ Op

(
N−β

)√
Op

(
LN max

i≤N

∥∥∥λ̂i − λi

∥∥∥
2
)

= Op

(√
LN

Nβ

)
op(1) = op(1) (46)

Now, we are going to bound the second term on the right-hand side of (45). For this we first

analyze the term Λ̂′Φ̂−1
u ut.

Op

(
N−β

) ∥∥∥∥
(
Λ̂′Φ̂−1

u − Λ′
0Φ

−1
u0

)
ut

∥∥∥∥
F

≤

Op

(
N−β

) ∥∥∥∥
(
Λ̂− Λ0

)′
Φ̂−1
u ut

∥∥∥∥
F

+Op

(
N−β

) ∥∥∥∥Λ′
0

(
Φ̂−1
u − Φ−1

u0

)
ut

∥∥∥∥
F

Using Lemma A.6., the first term can be bounded by:

Op

(
N−β

)
√√√√

N∑

i=1

∥∥∥∥
(
λ̂i − λi0

)(
Φ̂−1
u ut

)
i

∥∥∥∥
2

Op

(
N−β

)√
LN max

i≤N

∥∥∥λ̂i − λi0

∥∥∥
2
Op(1)

= Op

(√
LN

Nβ

)
op(1) = op(1) (47)

The second term can be bounded using Lemma A.4. according to:

Op

(
N−β

) ∥∥∥∥Λ′
0

(
Φ̂−1
u − Φ−1

u0

)
ut

∥∥∥∥
F

= Op

(
N−β

)
√√√√

N∑

i=1

∥∥∥∥
(
Λ′
0Φ

−1
u

)
i

(
φiu0 − φ̂iu

)(
Φ̂−1
u ut

)
i

∥∥∥∥
2

≤ Op

(
N−β

)
√√√√

N∑

i=1

∥∥∥φ̂iu − (φiu0)
∥∥∥
2
∥∥∥∥
(
Λ′
0Φ

−1
u

)
i

∥∥∥∥
2 ∥∥∥∥
(
Φ̂−1
u ut

)
i

∥∥∥∥
2

= Op

(
logN

Nβ

∥∥∥Φ̂u − Φu0

∥∥∥
F

)
= op(1) (48)
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Hence, using (46), (47) and (48) yields:

∥∥∥f̂t − ft

∥∥∥ = Op

(
N−β

) N∑

i=1

∥∥∥∥
(
Λ′
0Φ

−1
u0

)
i
uit

∥∥∥∥+ op(1) = Op

(
N−β/2

)
+ op(1) = op(1)

Lemma A.8.

max
i≤N

1

T

T∑

t=1

|ûit − uit|2 = Op

(
µ2 +

NdT
LN

)

Proof. Since ûit − uit =
(
λ̂i − λi

)
f̂ ′
t + λi

(
f̂t − ft

)′
, we have by Lemma A.6. and

Lemma A.7.:

max
i≤N

1

T

T∑

t=1

|ûit − uit|2 ≤ 2max
i≤N

∥∥∥λ̂i − λi

∥∥∥
2 1

T

T∑

t=1

∥∥∥f̂t
∥∥∥
2
+ 2max

i≤N
‖λi‖2

1

T

T∑

t=1

∥∥∥f̂t − ft

∥∥∥
2

≤ Op

(
max
i≤N

∥∥∥λ̂i − λi

∥∥∥
2
)
+Op


 1

T

T∑

t=1

∥∥∥f̂t − ft

∥∥∥
2




= Op

(
µ2 +

NdT
LN

)

Lemma A.9.

max
i,j≤N

∣∣σ̂ij − σij
∣∣ = Op

(√
µ2 +

NdT
LN

)
,

where dT = logNβ

N + 1
Nβ

logN
T .

Proof. Based on Lemma A.3.(iii) by Fan, Liao, and Mincheva (2011) we have:

max
i,j≤N

∣∣σ̂ij − σij
∣∣ ≤ max

i,j≤N

∣∣∣∣∣∣
1

T

T∑

t=1

uitujt − σij

∣∣∣∣∣∣
+ max

i,j≤N

∣∣∣∣∣∣
1

T

T∑

t=1

ûitûjt − uitujt

∣∣∣∣∣∣
, (49)

where the authors show that the first term on the right-hand side is Op

(√
logN
T

)
. Now we

are going to analyze the second term on the right-hand side of equation (49). In Lemma A.8.

we have shown that maxi≤N
1
T

∑T
t=1 |ûit − uit|2 = op(1). Hence, the result follows from Lemma
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A.3.(ii) by Fan, Liao, and Mincheva (2011).

A.2 Rate of convergence for the idiosyncratic error covariance matrix esti-

mator

In what follows, we are going to determine the convergence rate of the idiosyncratic error

covariance matrix estimator based on soft-thresholding.

Lemma A.10.

∥∥∥Σ̂τ
u −Σu

∥∥∥ = Op

(
SN

√
µ2 +

NdT
LN

)

Proof. The result follows from Lemma A.9. and Theorem A.1. of Fan, Liao, and Mincheva

(2013).

A.3 Convergence Rates for the Covariance Matrix Estimator

Proof: Theorem 3.2 (Convergence Rates for the Covariance Matrix Estimator)

Σ = Λ0Λ
′
0 +Σu0 (50)

Σ̂SAF = Λ̂Λ̂′ + Σ̂τ
u, (51)

where Σ̂τ
u corresponds to the POET estimator of Fan, Liao, and Mincheva (2013). Similar as in

Fan, Liao, and Mincheva (2013), we consider the weighted quadratic norm introduced by Fan,

Fan, and Lv (2008) and which is defined as:

‖A‖Σ = N−1/2
∥∥∥Σ−1/2AΣ−1/2

∥∥∥
F

Lemma A.11.

1

N

∥∥∥Σ̂SAF − Σ
∥∥∥
2

Σ
= Op


L2

N

N2

[
µ4 +

(
N

LN
dT

)2
]
+

[
NβLN

N2
+

S2
N

N

][
µ2 +

N

LN
dT

]

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Proof. The weighted quadratic norm of the difference between the estimated covariance

matrix Σ̂SAF and the true one Σ can be expressed as:

∥∥∥Σ̂SAF − Σ
∥∥∥
2

Σ
≤
∥∥∥Λ̂Λ̂′ − Λ0Λ

′
0

∥∥∥
2

Σ
+
∥∥∥Σ̂τ

u − Σu0

∥∥∥
2

Σ
(52)

If we consider C = Λ̂− Λ0 we can introduce the following definitions:

CC ′ = Λ̂Λ̂′ − Λ̂Λ′
0 − Λ0Λ̂

′ + Λ0Λ
′
0

Λ0C
′ = Λ0Λ̂

′ − Λ0Λ
′
0

CΛ′
0 = Λ̂Λ′

0 − Λ0Λ
′
0

Using the previous definitions, we can rewrite the first term in (52) in the following form

∥∥∥Λ̂Λ̂′ − Λ0Λ
′
0

∥∥∥
2

Σ
=
∥∥CC ′ + Λ0C

′ + CΛ′
0

∥∥2
Σ

≤
∥∥CC ′∥∥2

Σ
+
∥∥CΛ′

0

∥∥2
Σ
+
∥∥Λ0C

′∥∥2
Σ

Hence, equation (52) can be expressed as:

∥∥∥Σ̂SAF − Σ
∥∥∥
2

Σ
≤
∥∥CC ′∥∥2

Σ
+
∥∥CΛ′

0

∥∥2
Σ
+
∥∥Λ0C

′∥∥2
Σ
+
∥∥∥Σ̂τ

u − Σu

∥∥∥
2

Σ
(53)

Now we analyze each term in (53) separately:

∥∥Λ0C
′∥∥2

Σ
= N−1tr

(
Σ−1/2Λ0C

′Σ−1/2Σ−1/2CΛ′
0Σ

−1/2
)

= N−1tr
(
Λ′
0Σ

−1Λ0C
′Σ−1C

)

≤ N−1
∥∥∥Λ′

0Σ
−1Λ0

∥∥∥
∥∥∥Σ−1

∥∥∥ ‖C‖2F = Op

(
Nβ

N
‖C‖2F

)
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Similarly, we get
∥∥CΛ′

0

∥∥2
Σ
= Op

(
Nβ

N ‖C‖2F
)
. Further,

∥∥CC ′∥∥2
Σ
= 1

N ‖C‖4F .

Hence, by Lemma A.10. we get:

∥∥∥Σ̂SAF − Σ
∥∥∥
2

Σ
= Op

(
1

N
‖C‖4F +

Nβ

N
‖C‖2F

)
+Op

(∥∥∥Σ̂τ
u − Σu

∥∥∥
2

Σ

)

= Op


L2

N

N

[
µ4 +

(
N

LN
dT

)2
]
+

NβLN

N

[
µ2 +

N

LN
dT

]
+Op

(
S2
N

[
µ2 +

N

LN
dT

])

= Op


L2

N

N

[
µ4 +

(
N

LN
dT

)2
]
+

[
NβLN

N
+ S2

N

] [
µ2 +

N

LN
dT

]


Under the Frobenius norm we have:

Lemma A.12.

1

N

∥∥∥Σ̂SAF − Σ
∥∥∥
2

F
= Op


L2

N

N

[
µ2 +

N

LN
dT

]2
+

[
NβLN

N
+ S2

N

][
µ2 +

N

LN
dT

]


Proof. A similar argument as in Lemma A.11 leads to:

∥∥∥Σ̂SAF − Σ
∥∥∥
2

F
≤
∥∥CC ′∥∥2

F
+
∥∥Λ0C

′∥∥2
F
+
∥∥CΛ′

0

∥∥2
F
+
∥∥∥Σ̂τ

u − Σu

∥∥∥
2

F
, (54)

where the second term can be bounded by

∥∥Λ0C
′∥∥2

F
= tr

(
Λ′
0Λ0C

′C
)

≤ ‖Λ0‖2 ‖C‖2F = Op

(
Nβ ‖C‖2F

)

Furthermore, the first term in (54) has the same upper bound. Hence, again by using Lemma

A.10 we get:

∥∥∥Σ̂SAF − Σ
∥∥∥
2

F
≤ Op

(
‖C‖4F +Nβ ‖C‖2F

)
+Op

(∥∥∥Σ̂τ
u − Σu

∥∥∥
2

F

)

≤ Op

(
L2
N

[
µ2 +

N

LN
dT

]2
+NβLN

[
µ2 +

N

LN
dT

])
+Op

(
N

[
µ2 +

N

LN
dT

]
S2
N

)

= Op

(
L2
N

[
µ2 +

N

LN
dT

]2
+
[
NβLN +NS2

N

] [
µ2 +

N

LN
dT

])
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Inverse of the covariance matrix

Define,

Ĝ =

(
Ir + Λ̂′

(
Σ̂τ
u

)−1
Λ̂

)−1

G0 =
(
Ir + Λ′

0Σ
−1
u0Λ0

)−1

Lemma A.13.

(i)
∥∥∥Ĝ
∥∥∥ = Op

(
N−β

)

(ii)
∥∥∥Ĝ−1 −G−1

0

∥∥∥
F
= Op


Nβ

(
N−β/2 ‖C‖F +

∥∥∥∥
(
Σ̂τ
u

)−1
− Σ−1

u

∥∥∥∥
F

)


Proof.

(i) Lemma A.10. implies

∥∥∥∥
(
Σ̂τ
u

)−1
∥∥∥∥ = Op(1). Then, by the definition of Ĝ we have:

∥∥∥Ĝ
∥∥∥ ≤

∥∥∥∥∥

(
Λ̂′
(
Σ̂τ
u

)−1
Λ̂

)−1
∥∥∥∥∥

≤
πmax

(
Σ̂τ
u

)

πmin

(
Λ̂′Λ̂

) = Op

(
N−β

)

(ii) By the definition of Ĝ and G0, we have: Ĝ−1 −G−1
0 = Λ̂′

(
Σ̂τ
u

)−1
Λ̂−Λ′

0Σ
−1
u0Λ0. Hence, the

previous quantitiy can be decomposed according to:

Ĝ−1 −G−1
0 = C ′

(
Σ̂τ
u

)−1
Λ̂ + Λ′

0Σ
−1
u0C + Λ′

0

((
Σ̂τ
u

)−1
− Σ−1

u0

)
Λ̂ (55)

If we bound all three terms on the right hand side of equation (55), we get:

∥∥∥Ĝ−1 −G−1
0

∥∥∥
F
≤ ‖C‖F Op

(
Nβ/2

)
+

∥∥∥∥
(
Σ̂τ
u

)−1
− Σ−1

u0

∥∥∥∥
F

Op

(
Nβ
)

= Op


Nβ

(
N−β/2 ‖C‖F +

∥∥∥∥
(
Σ̂τ
u

)−1
− Σ−1

u

∥∥∥∥
F

)

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Lemma A.14.

1

N

∥∥∥Σ̂−1
SAF

− Σ−1
∥∥∥
2

F
= Op

(
LN

Nβ+1

[
µ2 +

N

LN
dT

]
+ S2

N

[
µ2 +

N

LN
dT

])

Proof. Using the Sherman-Morrison-Woodbury inverse formula, we get

∥∥∥Σ̂−1
SAF − Σ−1

∥∥∥
2

F
=

6∑

i=1

Li,

where

L1 =

∥∥∥∥
(
Σ̂τ
u

)−1
− Σ−1

u0

∥∥∥∥
2

F

L2 =

∥∥∥∥∥

[(
Σ̂τ
u

)−1
− Σ−1

u0

]
Λ̂

[
Ir + Λ̂′

(
Σ̂τ
u

)−1
Λ̂

]−1

Λ̂′
(
Σ̂τ
u

)−1
∥∥∥∥∥

2

F

L3 =

∥∥∥∥∥

[(
Σ̂τ
u

)−1
− Σ−1

u0

]
Λ̂

[
Ir + Λ̂′

(
Σ̂τ
u

)−1
Λ̂

]−1

Λ̂′Σ−1
u0

∥∥∥∥∥

2

F

L4 =

∥∥∥∥∥Σ
−1
u0

(
Λ̂− Λ0

)[
Ir + Λ̂′

(
Σ̂τ
u

)−1
Λ̂

]−1

Λ̂′Σ−1
u0

∥∥∥∥∥

2

F

L5 =

∥∥∥∥∥Σ
−1
u0

(
Λ̂− Λ0

)[
Ir + Λ̂′

(
Σ̂τ
u

)−1
Λ̂

]−1

Λ′
0Σ

−1
u0

∥∥∥∥∥

2

F

L6 =

∥∥∥∥∥∥
Σ−1
u0Λ0

([
Ir + Λ̂′

(
Σ̂τ
u

)−1
Λ̂

]−1

−
[
Ir + Λ′

0Σ
−1
u Λ0

]−1
)
Λ′
0Σ

−1
u0

∥∥∥∥∥∥

2

F

In the following, we bound each of the six terms, separately.

L2 ≤
∥∥∥∥
(
Σ̂τ
u

)−1
− Σ−1

u0

∥∥∥∥
2

F

∥∥∥Λ̂ĜΛ̂′
∥∥∥
2
∥∥∥∥
(
Σ̂τ
u

)−1
∥∥∥∥
2

By Lemma A.13. (i) follows that L2 ≤ Op(L1). Similarly, L3 is also Op(L1).

Further,

L4 ≤
∥∥∥Σ−1

u0

∥∥∥
2
‖C‖2F

∥∥∥Ĝ
∥∥∥
2 ∥∥∥Λ̂′Σ−1

u0

∥∥∥
2
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Hence, also by Lemma A.13. (i)

L4 ≤ ‖C‖2F Op

(
N−β

)
= Op

(
‖C‖2F N−β

)

Similarly, L5 = Op (L4). Finally,

L6 ≤
∥∥∥Σ−1

u0Λ0

∥∥∥
4 ∥∥∥Ĝ−G0

∥∥∥
2

F

By Lemma A.13. (ii) we have,

L6 ≤ Op

(
N2β

) ∥∥∥∥Ĝ
(
G−1

0 − Ĝ−1
)
G0

∥∥∥∥
2

F

≤ Op

(
N−2β

) ∥∥∥G−1
0 − Ĝ−1

∥∥∥
2

F

= Op

(
N−2β

)
Op


N2β

(
N−β ‖C‖2F +

∥∥∥∥
(
Σ̂τ
u

)−1
− Σ−1

u

∥∥∥∥
2

F

)


= Op

(
N−β ‖C‖2F +

∥∥∥∥
(
Σ̂τ
u

)−1
− Σ−1

u

∥∥∥∥
2

F

)

Adding up the terms L1 − L6 gives

1

N

∥∥∥Σ̂−1
SAF − Σ−1

∥∥∥
2

F
= Op

(
LN

Nβ+1

[
µ2 +

N

LN
dT

]
+ S2

N

[
µ2 +

N

LN
dT

])

A.4 Proof of Proposition 6.1

Proof. As presented in Section 2.4, the general equation of the covariance matrix estimator

based on an approximate factor model is given by:

Σ = ΛΛ′ +Σu. (56)

Correspondingly, the precision matrix is given by the inverse of the two matrices on the right-
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hand side of (56):

Σ−1 = Σ−1
u − Σ−1

u Λ
(
Ir + Λ′Σ−1

u Λ
)−1

Λ′Σ−1
u (57)

Further, by the definition of the factor loadings matrix Λ, the first part on the right-hand side

of (56) can be expressed as:

ΛΛ′ =




∑r
k=1 λ

2
1k C

∑r
k=1 λ

2
2k

. . .

C
∑r

k=1 λ
2
Nk




,

where C denotes the upper and lower diagonal block of the matrix ΛΛ′.

Hence, the sum of the eigenvalues of ΛΛ′ is calculated as:

r∑

k=1

πk
(
ΛΛ′) = tr

(
ΛΛ′) =

N∑

i=1

r∑

k=1

λ2
ik. (58)

From equation (58), we can clearly see that sparsity or zeros in the factor loadings matrix

corresponds to shrinking the sum of the eigenvalues of the covariance of the common component.

In the next step, we want to analyze the global minimum variance portfolio weights based on

the estimate of the covariance matrix of our SAF model.

Without loss of generality we assume that the idiosyncratic error covariance matrix is an

identity matrix, which corresponds to a high penalization of the off-diagonal elements based on

the POET method. Hence, the precision matrix in (57) simplifies to:

Σ−1 = IN − Λ
(
Ir + Λ′Λ

)−1
Λ′

= IN −
[
IN +

(
ΛΛ′)−1

]−1
(59)

In the following, we have a look at the eigenvalues of the precision matrix of our SAF estimator
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based on equation (59):

N∑

i=1

πi

(
Σ−1

)
=

N∑

i=1

πi (IN )−
N∑

i=1

1

1 + 1/πi (ΛΛ′)

=

N∑

i=1

πi (IN )−
N∑

i=1

πi
(
ΛΛ′)

πi (ΛΛ′) + 1

≤
N∑

i=1

πi (IN )−
∑N

i=1 πi
(
ΛΛ′)

N +
∑N

i=1 πi (ΛΛ
′)

(60)

From equations (58) and (60), we can see that the possible sparsity in Λ allowed by our SAF

model shrinks the precision matrix based on the SAF model towards an identity matrix. As the

GMVP weights directly depend on an estimate of the precision matrix this implies a shrinkage

of the SAF portfolio weights towards the weights of the 1/N -portfolio.
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B Tables

Table 5: Summary Statistics for the Estimated Portfolio Weights

Model 1 / N GMVP SAF POET DFM SIM FF3F LW KDM ADZ LW-NL BT

N = 30

Min 0.0333 -0.2676 -0.0578 -0.1150 -0.0870 0.0325 0.0155 -0.1163 -0.0423 -0.0572 -0.0670 -0.0080

Max 0.0333 0.2898 0.0583 0.1765 0.1255 0.0369 0.0547 0.1498 0.1064 0.1505 0.1467 0.0660

SD 0.0000 0.1336 0.0289 0.0685 0.0502 0.0011 0.0094 0.0635 0.0356 0.0513 0.0523 0.0179

MAD 0.0000 0.1051 0.0209 0.0533 0.0389 0.0008 0.0073 0.0496 0.0280 0.0408 0.0415 0.0141

N = 50

Min 0.0200 -0.5199 -0.0428 -0.1045 -0.0769 0.0195 0.0035 -0.1136 -0.0231 0.0150 -0.0686 -0.0590

Max 0.0200 0.5124 0.0381 0.1378 0.0934 0.0225 0.0393 0.1212 0.0626 0.0251 0.1224 0.0888

SD 0.0000 0.2219 0.0185 0.0510 0.0365 0.0007 0.0078 0.0503 0.0184 0.0023 0.0425 0.0324

MAD 0.0000 0.1745 0.0137 0.0397 0.0284 0.0005 0.0061 0.0393 0.0144 0.0018 0.0338 0.0256

N = 100

Min 0.0100 - -0.0262 -0.0776 -0.0577 0.0097 -0.0030 -0.0903 -0.0488 -0.0471 -0.0418 -0.0684

Max 0.0100 - 0.0223 0.0935 0.0601 0.0115 0.0248 0.0865 0.0686 0.0917 0.0822 0.0878

SD 0.0000 - 0.0104 0.0315 0.0224 0.0003 0.0054 0.0331 0.0233 0.0274 0.0245 0.0311

MAD 0.0000 - 0.0080 0.0246 0.0175 0.0002 0.0043 0.0258 0.0185 0.0217 0.0195 0.0247

N = 200

Min 0.0050 - -0.0165 -0.0539 -0.0419 0.0049 -0.0038 -0.0612 -0.0368 -0.0324 -0.0336 -0.0376

Max 0.0050 - 0.0145 0.0587 0.0368 0.0059 0.0150 0.0563 0.0510 0.0620 0.0660 0.0593

SD 0.0000 - 0.0063 0.0183 0.0136 0.0002 0.0034 0.0197 0.0159 0.0166 0.0173 0.0171

MAD 0.0000 - 0.0050 0.0142 0.0106 0.0001 0.0027 0.0154 0.0126 0.0132 0.0136 0.0135

Note: Summary statistics for the estimated portfolio weights for our sparse approximate factor model (SAF) are compared to the
equally weighted portfolio (1/N), the GMVP, the POET estimator by Fan, Liao, and Mincheva (2013) (POET), the Dynamic
Factor Model (DFM), the Single Factor Model by Sharpe (1963) (SIM), the Three-Factor Model by Fama and French (1993)
(FF3F), the estimators by Ledoit and Wolf (2003) (LW), Kourtis, Dotsis, and Markellos (2012) (KDM), Abadir, Distaso, and
Žikeš (2014) (ADZ), Ledoit and Wolf (2018) (LW-NL) and Bien and Tibshirani (2011) (BT).
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C Figures
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(b) N = 100
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Figure 4: SD for different subperiods
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